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Abstract

In the human body, white blood cells (WBCs) are crucial immune cells that help in the early detection
of a variety of illnesses. Determination of the number of WBCs can be used to diagnose conditions
such as hematological, immunological, and autoimmune diseases, as well as AIDS and leukemia.
However, the conventional method of classifying and counting WBCs is time-consuming, laborious,
and potentially erroneous. Therefore, this paper presents a computer-assisted automated method for
recognizing and detecting WBC categories from blood images. Initially, the blood cell image is
preprocessed and then segmented using an effective deep learning architecture called SegNet. Then,
the important features are devised and extracted using the EfficientNet architecture. Finally, the
WBCs are categorized into four different types using the XGBoost classifier: neutrophils, eosinophils,
monocytes, and lymphocytes. The advantages of SegNet, EfficientNet, and XGBoost make the
proposed model more robust and achieve a more efficient classification of the WBCs. The BCCD
dataset is used to evaluate the performance of the proposed methodology, and the findings are
compared to existing state-of-the-art approaches based on accuracy, precision, sensitivity, specificity,
and Fl-score. Evaluation results show that the proposed approach has a higher rank-1 accuracy of
99.02% and outperformed other existing techniques.
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Introduction

Blood is an essential component of the human body.
It constitutes around 7% of total body weight in
younger people. It is made up of 55% plasma,
allowing it to circulate easily all over the body via the
arteries [1-3]. The cells in the blood are divided into
three types, which differ in their color, size, texture,
morphology, and composition: thrombocytes
(platelets), leukocytes (white blood cells, WBCs), and
erythrocytes (red blood cells, RBCs). When examined
under a microscope, these components have different

morphologies and sizes, with WBCs being larger than
the other cells due to them having both cytoplasm and
nucleus. WBCs play significant roles in the immune
system and are also known as immune cells. WBCs
protect the body from infectious diseases and external
invaders. WBCs have typically been classified into
two categories [4—6]: nongranular and granular cells.
The granular cells include basophils, eosinophils, and
neutrophils, while the nongranular cells include
lymphocytes and monocytes.

Neutrophils feature multilobed nuclei have two to
five lobes each. They are the most prevalent
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phagocytic cells, accounting for 50%-60% of all
WBCs [7-9]. Meanwhile, eosinophils account for
1%—6% of all WBCs, with a bilobed nucleus in most
cases. In the blood and bone marrow, basophils are
one of the smallest WBC subsets, accounting for less
than 2% of the total. Moreover, monocytes are a type
of WBCs with nongranular cytoplasm that are formed
in the bone marrow and account for 2%-10% of all
WBCs [10-12]. T cells and B cells are the two types
of lymphocytes, which are the smallest of the WBCs.
They contain minimal cytoplasm and account for only
20%—-30% of WBCs.

In healthy humans, these WBC subsets make up set
proportions of total WBCs. Many disorders, such as
bacterial infection and inflammation, are associated
with abnormalities of the proportions of these WBC
subpopulations [13—15]. As such, WBC classification
and determination of the overall composition of
WBCs are vital in medical diagnosis. Doctors
regularly use such fundamental information for
determining the severity of hematological diseases.
Research on WBC classification has thus become an
essential part of medical evaluation. Peripheral blood
samples are sometimes examined manually by a
hematologist, who examines such samples under a
microscope. However, this technique is time-
consuming and can lead to incorrect results because
of fatigue or human error [16, 17]. Meanwhile,
automated hematological analyzer machines (such as
Sysmex) are prohibitively expensive, particularly in
low-income nations. Against this background, there is
a need for automated procedures to classify WBCs in
peripheral  blood Automatic  WBC
classification techniques have long been a focus of
researchers [18-20]. For example, a convolutional
neural network (CNN)-based WBC classification
introduced by Yao et al [21].
Classification, feature extraction, segmentation, and
image preprocessing phases were included in this
framework. For image segmentation, region growing-
and Otsu segmentation-based hybrid techniques have
been used. Subsequently, Two-DCNN
implemented to perform feature extraction and
classification.

smears.

technique was

was

Similarly, Cheuque et al. [22] implemented a multi-
level CNN technique to separate polymorphonuclear
and mononuclear cells, while for determining the
region of interest in WBCs, the faster R-CNN
technique was used. Two corresponding CNNs were
later implemented to categorize the WBC classes.

These networks were based on the model of
MobileNet with a depth-wise separable convolution
unit, with this unit being used for feature extraction
from each channel. In addition, Cinar and Tuncer [23]
proposed a hybrid Alexnet-Googlenet-SVM-based
technique to categorize different kinds of WBCs with
steps filtering, feature
extraction, and classification. To segment the WBC
nucleus, Lu et al. [24] developed a deep learning
technique called WBC-Net with two hybrid
techniques named Resnet and UNet++. Similarly,
Tarek et al. [25] presented a three-phase segmentation
and classification framework. In that study, the
authors segmented the WBCs by multi-level
thresholding. At this stage, the optimal threshold
values were selected by the butterfly optimization
algorithm. Subsequently, the feature extraction
process was conducted to extract the shape and
geometric features. Then, the classification was
performed using the multilayer perceptron, which
classifies blood cells into five categories, and the
optimal bias and weights of the network were
initialized by the Gray Wolf Optimization algorithm.
Another study conducted by Tavakoli et al. [26]
performed the segmentation and classification of
WBCs based on Otsu thresholding and support vector
machine, respectively. Based on the canonical
correlation analysis, Patil et al. [27] combined the
LSTM and CNN framework. In addition, in 2022, the
existing methods for evaluating blood smear images
and identifying leukemia from them were thoroughly
reviewed by Mittal et al [28]. They bridged a gap in
the literature by providing a thorough analysis of
149 papers outlining the techniques for analyzing
blood smear images and identifying leukemia. They
described the performance of the techniques, as well
as each of their benefits and drawbacks, such as poor
robustness. However, there remained a need to
improve the accuracy of the existing techniques to
develop an automated system. Therefore, in the study
reported in this paper, effective deep learning
techniques named SegNet- and EfficientNet-based
segmentation and feature extraction were conducted.
The SegNet architecture boundary
delineation and can extract highly discriminative
features. Subsequently, an XGBoost technique was
established to categorize the WBC images into four
types: lymphocytes, monocytes, eosinophils, and
neutrophils. The major contributions of this research
are as follows:

involving preprocessing,

improves

(1) An effective method is proposed for the
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segmentation and feature extraction of WBC images
using SegNet- and EfficientNet-based networks.

(2) An effective XGBoost-based
proposed for classifying WBCs into four different
classes, namely, neutrophils, eosinophils, monocytes,
and lymphocytes.

system is

(3) A detailed investigation is conducted on the
publicly available BCCD dataset to create a robust
and generalized framework for WBC classification.

The remaining portion of this work is structured as
follows. Section 2 discusses the previous research on
WBC segmentation and classification. The proposed
methodology and its details are given in Section 3.
Descriptions of the dataset, performance metrics,
results, discussion, and visualization of the proposed
approach are included in Section 4. Finally, the
conclusions are presented in Section 5.

Proposed Methodology
The proposed and
classifying WBCs
presented in this section. It contains four main phases,

approach for segmenting

into four distinct classes is

namely, preprocessing, image segmentation, feature

Input image Pre-processing
,“ . ' _ Image re-scaling
L+ P v ) data
@ : augmentation
& E7

SegNet-image segmentation

extraction, and classification. Initially, the input
images are preprocessed to enhance the images of the
dataset and then the preprocessed images are

learning
Then, the

segmented image features are extracted from the

segmented using SegNet-based deep
networks for accurate classification.
images using the EfficientNet architecture and
classified into the classes of neutrophils, eosinophils,
and lymphocytes using an XGBoost
classifier. These components are discussed in detail in

monocytes,

successive sections, and the system architecture of the
proposed approach is given in Fig. 1.

Preprocessing

To enhance the training phase of the proposed model,
the pictures in the dataset are rescaled into 256 %
256 pixels and converted into grayscale format in the
preprocessing stage. To reduce model overfitting,
these blood cell images are then subjected to an
image augmentation approach. Shearing, flipping,
rotation (45°), and brightness improvement are all
used to augment the data.

Segnet-based image segmentation

SegNet is a network architecture that is used in the
semantic segmentation of an image based on each

EfficientNet-feature extraction
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Fig. 1 Proposed framework.
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pixel. The network is mostly made up of two parts:
Rectified
nonlinearity and convolution are the most important

encoders and decoders. linear unit
components of the encoder part. These are batch-
normalized. The last section of the encoder contains
the maximum pooling layer. Thirteen convolution
layers are included in the encoder. Each encoder layer
has its decoder; therefore, the decoder has 13 layers
as well. To build a segmentation mask, the decoder’s
final output is sent into a softmax classifier. To build
a collection of feature maps, each encoder performs
Subsequently,
batch normalization is used. A feature-wise ReLU is
then applied as the activation function. After that, the
result is down-sampled by a factor of two using a
stride 2 non-overlapping window and 2 x 2 max-
pooling windows. To achieve shift invariability over
lower spatial translations in the image, max-pooling
is used. For each feature in the map, down-sampling

convolution utilizing filter banks.

gives a large number of spatial windows or contexts.

Afterwards, in the decoder section, the feature
maps are up-sampled using the pool indices. Then,
the feature maps are convolutionally applied by using
the filter banks. This process is used to obtain the
high-dimensional feature maps. Subsequently, these
maps are batch-normalized. Initially, the encoder
accepts the input image and the outputs produced by
the decoder are multiple pipeline feature maps. The
result of the last decoder (high-dimensional feature
map) is transferred to the softmax layer. This softmax
categorizes and predicts segmentation based on each
characteristic. The class with the highest probability
expected

at each pixel corresponds to the

segmentation.
Feature extraction using EfficientNet

The segmented WBC image is given as an input to
EfficientNet for feature extraction. In EfficientNet,
various mobile inverted bottleneck convolution
(MBConv) blocks are included in the baseline
architecture with Swish activation function, batch
normalization, and
sigmoid and linear activation are multiplied together
to form the Swish function. EfficientNet consistently
scaled all resolution (), width (w), and depth (d)
dimensions using simple and efficient composite

squeeze-and-excitation. The

coefficients. The number of channels in any layer is
referred to as width, while the number of layers in
CNN is referred to as depth, and the size of the image
is referred to as resolution. Compound scaling is

based on the idea that scaling any network dimension
(image resolution, depth, and width) can improve
accuracy. During the model scaling, the availability

of resources is determined by the compound

coefficient. This computation is given in the
following:
d=a’ (1)
w=p 2)
r=y" 3)

st.afy =2 a1, 1,y>1

Here, the compound coefficient is denoted by ¢ and
each dimension’s scaling coefficients are a, f, and y,
which can be selected by a grid search. Following
determination of the scaling coefficients, the baseline
network is scaled to attain the required target model
size. For example, When ¢= 1, the optimal values y =
1.15, p = 1.1, and o = 1.2 are found using a grid
search. EfficientNet-B0O is made up of two residual
blocks (Conv) and seven MBConv, which differ in
numerous ways, such as in terms of reduction ratio,
feature map expansion phase, and kernel size. Depth-
wise convolution is used in MBConv6, k3 x 3 and
MBConvl, k3 x 3, which includes 3 x 3 kernel size
with s stride size. Convolution with 1 x 1 kernel size
activation and batch normalization are incorporated in
these two blocks. In MBConv6, k3 x 3, a dropout
layer and skip connection are included. Although it is
not the same as for MBConvl, k3 x 3. Furthermore,
MBConv6, k3 x 3 is six times that of MBConvland
k3 x 3 for the extended feature map, and the
reduction rate r is fixed to 24 and 4 for MBConv6,
k3 x 3 and MBConvl, k3 x 3, respectively. When
both MBConv6, k5 x 5 and MBConv6, k3 x 3
conduct the same operations, MBConv6, k5 % 5 has a
kernel size of 5 x 5, and MBConv6, k3 % 3 uses a
kernel size of 3 x 3. The Adam optimizer was used to
speed up the training process instead of random
Finally, the
obtained feature maps are given to the classifier to

initialization of network weights.

perform classification.
Classification using XGBoost

For WBC XGBoost-based
classification process is proposed in this section.

classification, an

XGBoost is a machine learning technique that is
commonly used for both regression and classification.
It is a group of decision trees with gradient boosts.

https://www.sciopen.com/journal/2150-5578
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Initially, a group of K nodes appearing in the
ensemble of classification and regression trees
(CARTs) were used. For the kth tree, the total
prediction scores at a leaf node f; are used to compute
the final prediction result of a class label, which is 3,
as shown in the equation below:

$i= ) filx,
k=1

Here, for all CARTSs, the set of all K scores is
denoted by F and the training set is denoted by x;.

Jee F “4)

Then, a regularization process is implemented to
obtain better outputs, which are expressed as

Lip) = 3" LGy + ) 2(f) (5)
i k

Here, the error variations among predicted class
labels 9, and target y;, are calculated to define the
differentiable loss function ¢. In the second portion,
to eliminate issue of overfitting, penalization Q is
performed on the model complexity. The penalty ©Q
function is calculated as follows:

1 T
Q(f):yT+§/1;w§ (©6)

Here, to control the regularization degree, the
configurable parameters A and y are used. The weight
values are stored in w; for each leaf, and leaves are
denoted by T. Subsequently, gradient boosting (GB)
is used with the loss function to resolve the
classification problem, which is then extended by a
second Taylor expansion. In step ¢, the constant term
is omitted to obtain a simple target, which is
determined as follows:

n

_ 1
LY = Z [giﬁ(xi) + Ehifrz(xi)] +Q(f) =

i=1

n 1 , 1 T -
Z [g,-f,(x,-)+ i) | +9T + EAZWI. -
T
Z[(Zg]w + = (Zh +/1] +yT N
i€l i€l
Here, the instance of leaf ¢ is denoted by

I; = {ilg(x;) = j} and the equations for the loss function’
s first j; and second h; order gradient statistics are
expressed as follows:

A6 )

8= ®)

Ly

h,‘ = >
0™

)

The appropriate weight w; of leaf j is determined as

Zielv gi

Wm e (10)

Ziel hi+a

The quality of the tree structure is measured using

follows:

the scoring function ¢g. For the x; tree structure, the
quality ¢ is determined by the following equation:

L) = Z h +/l
i€l;

To compute the split nodes after splitting, the loss
reduction is calculated by applying scores in the
instance set of right /3 and left /; nodes, which is
given as follows:

Lspht:
[ Q8 (Z gy (Z 2’
Z,e/Lh+/l Z hi+A4 Z hi+A4

here, I = I UI,.

-y (12

The deep features collected from the training set
were used to train the XGBoost classifier. After
training the XGBoost model,
extracted from the testing set were used to test the
model. Finally, XGBoost predicts which class of
WBCs the image should be classified into.

the deep features

Results and Discussion

This section describes the experiments and details of
the dataset, as well as the parameter settings, results,
and discussion. All experiments were performed in a
system with the Windows 10 operating system, 32
GB of RAM, Nvidia GTX1080Ti GPU, and an Intel
Core 17 processor. Keras with the tensor flow
backend was used to conduct all of the experiments

involving the proposed approach.
Dataset

The data for this study were taken from the BCCD
dataset. It was retrieved from https://www.kaggle.com/
paultimothymooney/blood-cells/data. It contains 367
photos with a resolution of 640 pixels x 480 pixels.
Eosinophils, lymphocytes, monocytes, basophils, and

https://www.sciopen.com/journal/2150-5578
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neutrophils are the five different blood cell classes
included in this dataset. Basophil images were
excluded (because only five images were included in
this class) and the images of the other four kinds of
WBCs were used for WBC classification. The blood
smears from various patients were examined through
the Gismo Right approach using a standard light
microscope equipped with a 100x objective lens and
the images were captured using an analog CCD color
camera to create the dataset. Various picture
augmentation approaches were used to enhance the
number of images in the dataset, as detailed in the
methodology section.

Training and testing

The test set contained 20% of the dataset’s images,
while the training set contained the remaining 80%,
for training and testing the proposed framework. To
optimize the adaptive learning process, the Adaptive
Moment Estimate (Adam) was used as an optimizer.
It generally produces superior outcomes compared
with other optimizers, performs quicker computation,
and needs less tuning parameters. In XGBoost, the
values of hyperparameters such as n-estimators, max.
depth, min-child weight, sub-sample, and gamma are
300, 6, 3, 1, and O, respectively. For segmentation,
the accuracy and loss graph of training and testing is
shown in Figs. 2(a) and 2(b). Meanwhile, for
classification, the accuracy and loss graph of training
and testing in is presented in Figs. 3(a) and 3(b).

The segmentation framework was trained with an
initial learning rate of 0.001, a batch size of 8, and L2
regularization of 0.0005. The model will fail to
recognize significant data structures if the learning
rate is inadequate. Meanwhile, errors may occur if it
is large. As a result, we decided to set the learning
rate to 0.001. Similar to this, a higher batch size
necessitates additional memory for training and
smaller batch size produce more noise in the error
computations. Therefore, the network was configured
with a batch size of 8. An L2 regularization and
dropout approach was implemented to avoid
overfitting. The simulation was carried out for 100
epochs, and the outcomes were examined on the
100th epoch. After 50th epoch, the training loss
decreased to its lowest value of 0.8, and the
corresponding training accuracy was 91.24%, as
depicted in Fig. 2. As shown in Fig. 3, the validation
process loss reached its lower limit of 0.75 after 55
training epochs, and the associated validation
accuracy was 93.78%. These training charts clarify
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Fig. 2 Accuracy and loss graphs for training and testing in the
segmentation framework. (a) Accuracy and loss during
training. (b) Accuracy and loss during testing.
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Fig. 3 Accuracy and loss graphs for training and testing in the
classification framework. (a) Accuracy and loss during
training. (b) Accuracy and loss during testing.

that the proposed model performed better, increasing
classification accuracy while reducing validation loss.
Moreover, the testing loss and accuracy plots indicate
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that the proposed model was not overfitted with
training data in both segmentation and classification
phases.

Segmentation results

The suggested WBC segmentation algorithm’s
performance was measured using three metrics: dice
similarity coefficient (DSC), sensitivity, and
precision.
TP
DSC=2x 13
(TP + FP) + (TP + FN) (13)
TP
Sensitivity = ——— 14
ensitivity TP TN (14)
TP
Precision = ——— 1
recision TP+ TP (15)

The above equations produce these measures using
the false negative (FN), true positive (TP), false
positive (FP), and true negative (TN) of the final
segmentation. Based on these metrics, the obtained
quantitative findings of the proposed segmentation
strategy are given in Table 1 and Fig. 4.

Table 1 Comparison of WBC cell types for four classes in
segmentation

WBC cell type DSC (%) Precision (%) Sensitivity (%)
Neutrophils 98.73 99.84 99.81
Eosinophils 99.23 99.78 99.89
Monocytes 98.84 99.87 99.91

Lymphocytes 98.65 99.72 99.81

100 == Neutrophils
== Eosinophils
== Monocytes
== Lymphocytes
§
Q
an
g 99
=
o
jo)
(=¥
98 . T
DSC Precision Sensitivity

Performance metrics

Fig. 4 Performance comparison of WBC cell types in four
classes (segmentation).

Table 1 shows that the eosinophil class attains high
DSC values, while it has slightly lower values than
the other classes in terms of precision and sensitivity.
Meanwhile, the precision and sensitivity values of the
monocyte class are higher than those of the other
three classes, and neutrophils also achieve similar

values. Compared with the other

performance of lymphocyte segmentation is slightly

classes, the

worse in terms of all of the applied metrics.

To analyze the performance of the proposed
approach, the quantitative results of the proposed
technique are evaluated with existing state-of-the-art
techniques. These results are given in Table 2 and
Fig. 5.

Table 2 Comparison of proposed segmentation technique

Techniques DSC (%) Precision (%) Sensitivity (%)
K-means algorithm [29] - 94.38 99.78
Otsu’s thresholding [26] 96.75 99.72 95.26

VGG-UNet [30] 93.94 89.48 98.87
UNet [30] 94.22 90.80 99.21
Proposed approach 98.86 99.80 99.85
100="—"x J— p—— 7
g 95| // \U/ \\‘ //
> 0 \ 7
0 \ ¥
< \ /
= 5 /
5 \ e
~ 90 v
-+ Precision
< Sensitivity
85 1 1 1 1 1
K-means Otsus VGG-UNET UNET Proposed
algorithm  thresholding

Fig. 5 Comparison
segmentation.

of precision and sensitivity for

From Table 2, it is observed that the performance
of Otsu’s thresholding technique is superior to that of
all the other techniques, but not to our proposed
approach. Moreover, in terms of sensitivity, the
K-means algorithm attains a good value (99.78%),
which is similar to that of the proposed approach
(99.85%). This means that the proposed model has a
high capacity to detect the background class of the
image.

Finally, the proposed segmentation technique was
identified and segments the nucleus with a higher
DSC, sensitivity, and precision of 98.86%, 99.85%,
and 99.80% respectively.

Classification results

For quantitative assessment of the -classification
performance, conventional metrics such as Fl-score,
precision, accuracy, specificity, and sensitivity were
used:

https://www.sciopen.com/journal/2150-5578
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Accuracy = P IIII: : ;I:E TEN (16)
Sensitivity = % (17)
Specificity = % (18)

Precision = % (19)
Fl-score = ZXTPZJT% (20)

Here, true positive (TP) denotes the number of
accurately identified blood cells, and the number of
erroneously detected blood cell types is shown by the
false-negative (FN) indicator. The number of cells
properly recognized as not the correct blood cell type
is referred to as true negative (TN), whereas the
number of cells wrongly recognized as not the correct
blood cell type is referred to as false positive (FP).
The confusion matrix for the classification process is
displayed in Fig. 6. This matrix shows that the
lymphocyte samples were accurately identified at a
rate of 99.25%, which is a higher accuracy than that
for the other samples. A total of 605 lymphocyte
samples were correctly classified from 630 samples
(true few

positives). Meanwhile,

monocyte, and lymphocyte samples were incorrectly
classified by the system.
600
Isoo

-400

neutrophil,

-300

True label
NEUTRO MONO LYMRHO EOSINO

-200

IlOO

Fig. 6 Confusion matrix for the proposed approach.

EOSINO

LYMRHO MONO
Predicted label

NEUTRO

To assess the classification performance of the
suggested approach, a comparison was performed
based on each class, as shown in Table 3 and Fig. 7.

By carefully examining the F1-score metric, which
encompasses both sensitivity and precision, it can be
concluded that the suggested strategy produced the
best results in the majority of the classes. The
suggested method correctly identified neutrophils,

Table 3 Comparison of WBC cell types in classification

Accuracy Precision Sensitivity Specificity Fl-score

WBCeellope o) )
Neutrophils 98.95 99.12 98.37 99.45 98.86
Eosinophils 99.02 98.62 98.94 98.54 98.78
Monocytes 98.89 98.85 99.14 98.97 98.38

Lymphocytes ~ 99.25 99.36 98.89 99.47 98.83

100 -
mm Neutrophils == Monocytes
== Eosinophils == Lymphocytes
99
S
)
50
S 981
=
3t
5
=9
97 H
96 =

Accuracy  Precision  Sensitivity Specificity Fl-score

Performance metrics

Fig. 7 Performance comparison of WBC cell types in four
classes (Classification).

eosinophils, monocytes, and lymphocytes in the
BCCD dataset with Fl-scores of 98.86%, 98.78%,
98.38%, and 98.83%,
classes, the

respectively. Among all

classification = performance  of
lymphocytes was better than that for the other classes.
The classification accuracy was worse for monocytes

than for eosinophils, lymphocytes, and neutrophils.

To evaluate the efficiency of the classification
process, the proposed approach was compared with
existing techniques, the results of which are given in
Table 4 and Fig. 8.

The suggested approach had the best performance
with precision, sensitivity, and Fl-score of 98.98%,
98.83%, and 98.71%, whereas Two-DCNN had the
poorest performance in terms of these three variables
for the BCCD dataset (Table 4). In the comparison of
all approaches, C-SVM and CCA-CCN-RNN
outperformed Two-DCNN and Densenet-121, but did
not outperform the proposed approach. In Densenet-
121 networks, a lack of feature learning led to
incorrect labeling. Furthermore, the employed VGG

networks were unable to address the issue of
overfitting.
The Two-DCNN and Densenet-121 networks

performed particularly poorly in WBC classification.
This was attributed to the fact that the excessive
connections of Densenet-121 produced overfitting,
while the Two-DCNN technique always reprocessed

https://www.sciopen.com/journal/2150-5578
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Table 4 Comparison of classification networks

Method Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) Fl-score (%)
Two-DCNN [21] — 91.6 91.6 — 91.6
C-SVM [31] 98.44 96.67 96.12 98.04 97.23
CCA-CNN-RNN [27] — 95.83 95.82 98.43 95.82
Densenet-121 [32] 94 94.22 93.74 — 93.81
Proposed 99.02 98.98 98.83 99.10 98.71
100 categorization system that can recognize not only
y WBCs but also other blood cells to help doctors make
better diagnoses.
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Fig. 8 Comparison of Fl-score, sensitivity, and precision
metrics for classification.

features from the bottom layers, which exaggerated
the divergence of WBC feature extraction. These
results indicated that the proposed approach has a
scalability and WBC
classification.

superior resilience in

Conclusion

This study developed a deep learning- and machine
learning-based hybrid method for the automatic
detection of WBC subsets from peripheral blood
smear images. The proposed framework classified the
WBCs into four major classes and showed the highest
performance for all of these classes. Specifically,
lymphocyte, monocyte, eosinophil, and neutrophil
cell types were detected with accuracy rates of
99.25%, 98.89%, 99.02%, and 98.95%, respectively.
The overall accuracy of our proposed approach was
99.02%. The experiments revealed that the proposed
approach

outperformed the existing models.

Moreover, the proposed model’s segmentation
performance was also superior to those of all other
competitive methods. In the future, we intend to
continue to improve the current network architecture,

as well as refine and develop an automatic
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