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Abstract

In this study, we fabricated a series of nanocomposites using a neodymium-doped yttrium aluminum
garnet (Nd:YAGQ) laser that was operated with specific parameters, as follows: wavelength, 1064 nm;
energy output, 500 mlJ; pulse number, 500; and frequency, 1 Hz. Four distinct types of
nanocomposites were produced: chitosan (CS); chitosan-titanium oxide (CS-TiO,); chitosan-silver
(CS-Ag); and a composite of chitosan, titanium oxide, and silver (CS-TiO,-Ag). A transmission
electron microscopy (TEM) analysis was employed to characterize these nanocomposites, revealing
particle sizes of 13, 15, 34, and 32 nm for CS, CS-TiO,, CS-Ag, and CS-TiO,-Ag, respectively. We
further evaluated the antimicrobial efficacy of these nanocomposites against two prevalent bacterial
strains, i.e., Escherichia coli and Klebsiella. Our observations indicated varying degrees of
bactericidal effectiveness, as represented by the diameters of the killing zones. More specifically, for
E. coli, the inhibition diameters were 20 mm (CS), 36 mm (CS-Ag), 38 mm (CS-TiO,), and 40 mm
(CS-TiO,-Ag). Similar results were observed for Klebsiella, with inhibition diameters of 28 mm (CS),
35 mm (CS-Ag), 38 mm (CS-TiO,), and 43 mm (CS-TiO,-Ag). Moreover, the CS-TiO,-Ag
nanocomposite was further studied regarding its potential for use in environmental applications,
especially water purification. An experiment combining 30 mL of the CS-TiO,-Ag nanocomposite
with 30 mL of contaminated water resulted in successful purification, as corroborated by a subsequent
analysis. In conclusion, this study offered important insights into the fabrication of chitosan-based
nanocomposites and their respective antimicrobial performances against E. coli and Klebsiella.
Furthermore, it illustrated the promising potential of the CS-TiO,-Ag nanocomposite for use in water
purification applications, thus demonstrating its potential for broader environmental utility.

Keywords: chitosan-titanium-oxide-silver (CS-TiO,-Ag); optical properties; transmission electron
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Introduction these materials, such as their diminutive size coupled
with a large surface area, have paved the way for new
and exciting applications in various sectors, including
water purification and antibacterial treatments.
under 100 nm, are at the forefront of modern  This advancement offers potential solutions for

technological innovation. The unique attributes of  contemporary environmental challenges, including

Nanomaterials, which are defined by dimensions
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water pollution and bacterial resistance. A key area of
focus in this context is the problem of antibiotic
resistance associated with many types of bacteria.
However, studies have shown that nanomaterials can
effectively kill these resistant bacteria [1-3].

A multitude of studies have endorsed the
effectiveness of distinct types of nanomaterials in this
domain. Notably, nanoscale metal oxides, such as
titanium oxide and zinc oxide, exert antimicrobial
actions through the mechanism of photocatalytic
oxidation [4—6]. Similarly, nanosilver and nanogold
particles have displayed antibacterial effectiveness by
forming reactive chemical combinations that can
disrupt cells [7, 8]. Furthermore,

nanocharcoal, to biochar, demonstrates a

bacterial

akin
capacity for effective water purification by absorbing
as well as chemical and biological
pollutants [9]. In the realm of antibacterial solutions,

impurities,

silver, in its nano form, has been renowned since
ancient times for its antibacterial attributes, offering
an intense and effective antibacterial action [10]. In
this context, the bacterial genus Klebsiella, which
belongs to the family Enterobacteriaceae and includes
species such as K. pneumoniae and K. granulomatis,
stands out. These bacteria can cause a variety of
diseases if they spread to other parts of the body, such
as the lungs, blood, or urinary tract [11]. Some strains
of Klebsiella exhibit resistance to many anti-
inflammatory drugs, including potent antibiotics such
as carbapenems; however, nanomaterials have
displayed effectiveness in combating these resistant
strains [12,13]. Escherichia coli is another important
bacterium in this scenario. As the dominant normal
intestinal bacteria in human and animal intestines,
E. coli strains can cause a variety of infections,
ranging from urinary tract infections to severe
diarrhea. Nanomaterials, such as zinc oxide and
nanometer silver, have been shown to eradicate these
bacteria by affecting the integrity of the cell
membrane metabolism
[14—16]. Further exploration of natural compounds in

this context revealed that chitosan, which is derived

and disrupting bacterial

from the exoskeleton of crustaceans (such as shrimp
and crab), holds significant promise in water-
purification and bacterial-elimination applications
because of its unique adsorption capabilities [17].
Titanium oxide, frequently used
nanomaterial, photocatalytic

which is a
possesses  robust
oxidation properties, effective in

eliminating bacteria and other organic matter in water

rendering it

[18]. The preparation of nanomaterials entails various
methods. The chemical methods include sol—gel
processing for stability [19], chemical deposition
[20], vapor deposition [21],
decomposition  [22], and
synthesis [23]. The physical methods encompass
evaporation—condensation [24], thermal spray [25],
laser melting [26], and pulsed laser ablation [27]. In

chemical thermal

microwave-assisted

our previous research, a compound comprising
chitosan, titanium oxide, and silver (CS-TiO,-Ag)
was fabricated using the method of pulsed laser

ablation in liquids.

The focus of this research was the application of
chitosan, titanium oxide, and silver for the dual
purpose
purification, based on their proven efficacy in
tackling water pollution and bacterial contamination.

of bacterial extermination and water

Experimental

Mueller—Hinton agar (a culture medium for bacteria),
the CS-Ti0,-Ag nanocomposite, a 5-cm-long sponge
with a diameter of 3 cm, a 12-cm syringe, a beaker,
contaminated water, and an intravenous set (IV set)
were used in the present study.

The nanocomposite was synthesized using a
neodymium-doped  yttrium  aluminum  garnet
(Nd:YAG) laser with a wavelength of 1 064 nm, an
energy level of 500 mJ, 500 pulses, and a frequency
of 1 Hz according to the method detailed in our
previous research. As shown in Fig. 1, analyses were
performed using ultraviolet (UV)-visible (Vis)
spectroscopy and transmission electron microscopy

(TEM) in the liquid medium.

To prepare the Mueller—Hinton agar, 38 g of agar
powder (CM0337B) was suspended in 1 L of distilled
water, mixed well until complete dissolution, and
then steam sterilized at 121 °C for 15 min. The
sterilized liquid was then poured into a Petri dish and
left to solidify.

The microbial inoculum was spread evenly across
the surface of the agar plate using the disc diffusion
method. A hole with a diameter of 6—8 mm was then
drilled aseptically using a drill or a sterile cork tip. A
0.5-mL volume of the nano-antibacterial solution was
applied, and the agar plates were incubated at 37 °C.
The antibiotic diffused into the agar medium, thus
inhibiting the growth of the test microbe strain [28].
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Fig. 1 Mechanism underlying the
nanocomposite (CS-TiO,-Ag).

To create the filter, a sponge was placed inside a
syringe, and an IV set was inserted into the bottom of
the syringe, with the other end placed in a beaker (as
shown in Fig. 2). Before the filtration process, the
sponge was soaked in the nanocomposite for 10 min,
and 30 mL of contaminated water was then added to
the sponge, for filtration, with or without the
of the
contaminated water was performed before and after

nanocomposite. An absorbance analysis

filtration (after a 5-min waiting period).

!'m w.=

Fig. 2 Water-purifying filter.

Results and Discussion

UV-Vis spectroscopy revealed that the peak of
CS-Ag was located at 400 nm, whereas that of
CS-TiO, was detected at 224 nm. In turn, for the
CS-Ti0O,-Ag nanocomposite, there was no shift in the
peak position. However, there was a notable change
in the absorption intensity caused by the increased
concentration of the nanoparticles within the solution
[29]. Specifically, there was an increase in the
intensity of CS-Ti0, and a decrease in the intensity of
CS-Ag within the CS-TiO,-Ag composite. This
change in intensity was attributable to the formation
of a core—shell structure, suggesting that the silver
nanoparticles are encapsulated by titanium [30]. This
is further depicted in Fig. 3.
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Fig. 3 UV-Vis spectra of CS-Ag, CS-TiO, CS-TiO,-Ag, and
CS.

TEM images revealed that chitosan particles
exhibit their
predominantly adopting a spherical form, as depicted

heterogeneity  in shape  while
in Fig. 4. Under usual circumstances, chitosan tends
to display a fibrous or plate-like structure. However,
in the observed sample, the chitosan polymer adopted
a spherical morphology. The shape of the chitosan
particles can be affected by various factors, such as
the polymer’s concentration, the preparation method
used, and the pH [31]. Our
observations indicated that the average size of these
particles was approximately 13 nm, as illustrated in
Fig. 5.

the temperature,

Regarding the CS-Ag nanocomposite, its particles
exhibited an almost spherical form and resembled a
core—shell structure, as illustrated in Fig. 6. The size
of these nanoparticles was approximately 34 nm, as
depicted in Fig. 7. This could be attributed to the
encapsulation of the silver surface by chitosan. By
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Fig. 4 TEM image of CS nanoparticles.
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Fig. 5 Distribution of the size of a CS nanoparticle.
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Fig. 6 TEM image of CS-Ag nanoparticles.
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Fig. 7 Distribution of the size of a CS-Ag nanoparticle.

serving as an encapsulating agent, chitosan can
deposit itself on the surface of silver particles, which

results in the creation of a core—shell structure. In this

structure, the core is constituted by silver, whereas
the shell is composed of chitosan [32].

The CS-TiO, nanocomposite exhibited a hexagonal
structure enveloped by spherical chitosan particles, as
depicted in Fig. 8. This could be attributed to the
introduction of acetic acid during the preparation of
chitosan, which affects the growth and crystallization
of titanium oxide particles, thus giving rise to the
hexagonal shape [33]. The average size of the
CS-TiO, nanocomposite was around 15 nm, as shown
in Fig. 9.

S .
50 nm NawahAtom Sci. Ltd. Co. Date: 13 March 2023

Fig. 8 TEM image of CS-TiO, nanoparticles.
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Fig. 9 Distribution of the size of a CS-TiO, nanoparticle.

In turn, the CS-TiO,-Ag nanocomposite presented
a spherical form, as depicted in Fig. 10. The effect of
chitosan on silver nanoparticles and titanium oxide
nanoparticles can vary according to the conditions
during  particle
preparation. Moreover, chitosan possesses active
groups that have the capacity to interact with the
surface of silver and titanium oxide particles. This
contributes to the stabilization of the particles,
thereby reducing their propensity to aggregate [34].
The mean size of the CS-Ti0,-Ag nanocomposite was
approximately 32 nm, as illustrated in Fig. 11.

and concentrations  utilized
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Fig. 10 TEM image of CS-TiO,-Ag nanoparticles.
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Fig. 11 Distribution of the size of a CS-TiO,-Ag nanoparticle.

Nanocomposite Applications

Antimicrobial applications

E. coli bacteria were exposed to several compounds,
including CS, CS-TiO,-Ag, CS-Ag, and CS-TiO,,
each at a volume of 200 pL. After a 24-h incubation
period at 37 °C, the highest bacterial inhibition was
observed for the CS-TiO,-Ag nanocomposite, which
yielded an inhibition zone of 40 mm. This was
followed by the CS-TiO, nanocomposite, with an
inhibition zone of 38 mm. In turn, the CS-Ag
composite displayed an inhibition zone of 36 mm,
whereas the CS polymer had the smallest effect,
inhibiting bacterial growth over a zone of only 20 mm
(Fig. 12). Furthermore, even after an incubation
period of 72 h, these inhibition zones remained
consistent, suggesting that the compounds eradicated
the bacteria effectively.

.;

-Ag CS-TiO, CS-Ag Cs

Fig. 12 Bacterial cell (E. coli) death.

Conversely, the application of the nanomaterials to
Klebsiella bacteria under the same conditions for 24 h

yielded inhibition zones of 43, 38, 35, and 28 mm for
CS-TiO,-Ag, CS-Ti0O,, CS-Ag, and CS, respectively,
as depicted in Fig. 13(a). However, after a 72-h
incubation period, the bacteria re-emerged, as shown
in Fig. 13(b). This evidence suggests that, although
the nanocomposites successfully inhibited Klebsiella
bacteria, they only fully eradicated the E. coli
bacteria. This can be explained by the fact that E. coli
bacteria carry a positive charge, whereas Klebsiella
bacteria possess a negative charge.

@

(b)

CS-Ag cs

Cs- CS-TiO,

i0,-Ag

Fig. 13 (a) Bacterial cell (Klebsiella) death. (b) Bacterial cell
(Klebsiella) inhibition.

Water purification

The efficacy of the filter depicted in Fig. 14 was
evaluated regarding water purification by measuring
the adsorption of the contaminated water. Initially,
the absorption intensity was measured as 2.54. After
passing the water through the filter, the absorbance
increased to 2.77, suggesting the successful capture
and removal of pollutants by the filter. The same
process was then repeated with the application of
nanoparticles after a time interval of 10 min, at which
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— Filte(CS-TiO,-Ag)
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Fig. 14 UV-Vis spectra of the polluted water, sponge filter
only, and sponge filter with the CS-TiO,-Ag nanocomposite.
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point the absorbance was recorded as 1.33, which
signifies the sustained efficiency of the filter in
pollutant elimination .From these observations, it can
be deduced that the filter has an effective
performance in water purification, achieving an
efficacy rate of 75%.

Conclusion

In summary, the findings of this research led to the
assertion that the nanomaterials, i.e., CS, CS-TiO,,
CS-Ag, and CS-TiO,-Ag, exhibited a significant
efficacy in eliminating E. coli bacteria and inhibiting
the growth of Klebsiella bacteria. Furthermore, the
CS-TiO,-Ag compound proved to be effective in
purifying water, by achieving an efficacy rate of up to
75%. The investigations carried out using TEM
demonstrated that these compounds have sizes in the
nano range, although their dimensions varied. These
insights could pave the way for the development of
new applications in water treatment and highly
efficient bacterial control strategies.
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