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Abstract

Fresh pomegranate peel extract was employed to synthesize silver oxide nanoparticles (Ag,O NPs).
Rapid formation of stable Ag,0O NPs was observed on exposure to the aqueous fresh pomegranate
peel extract with solution of AgNO;. The Ag,0 NPs were characterized by X-ray analysis, scanning
electron microscopy (SEM), ultraviolet—visible (UV-Vis) spectroscopy, and Fourier transform
infrared spectroscopy (FTIR). The X-ray diffraction (XRD) confirmed that the forming Ag,O NP has
a crystalline size of 37 nm, while SEM micrographs revealed a comparatively spherical shape, with
the size of ~ 64 nm. The Ag,0 spectrum displayed a peak in the visible range and a blue shift at 461
nm corresponding to the Plasmon absorbance of silver nanoparticles. Four bacterial strains and one
type of fungus were tested using Ag,O NPs. The results showed the negative influence of Ag,0O NPs
on the growth rate, thus implying the significance of the present study in production of biomedical
products.

Keywords: silver oxide nanoparticles (Ag,O NPs); ultraviolet—visible (UV—Vis) absorption; fresh
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Introduction

Several metallic nanoparticles were synthesized using
green chemicals without external chemicals that could
[1-3].
approach is more favourable because of its simplicity,

contaminate the environment The green
purity, and cost-effectiveness when synthesizing
nanoparticles with specific attributes [4, 5]. Plant
extracts contain bioactive substances such as starch,
terpenoids, alkaloids,
polysaccharides, and polyphenols. By acting as
reducing and capping agents, these chemicals can aid

proteins, phenolic acids,

in the formation of nanoparticles [6, 7]. Silver, a

noble metal, stands out among the many metallic
nanoparticles studied in nanomaterial science because
of its unique qualities that can be used in various
sectors. The antimicrobial characteristics of silver
oxide nanoparticles (Ag,O NPs), extensively utilized
in antibacterial and antifungal applications, are due to
the electrical changes in the bacterial membrane when
they come into contact. These changes significantly
boost AgNP’s surface reactivity [8].

Furthermore, metal nanoparticles' resistance to
degradation under culture conditions and their

capacity to retain their effectiveness for extended
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periods without degrading enhance their bactericidal
efficacy [9]. Nanoparticles' antibacterial effect is the
most likely because electrostatic contact with
Bacteria's cell membrane and internalization of Ag,O
NPs in the cell results in reactive oxygen species
(ROS) and membrane damage [10, 11]. ROS are
oxidizing chemicals that cause DNA damage by
oxidizing lipids and proteins present in the cell. The
lack of critical proteins causes oxidative stress and
disrupts normal cellular functions, damaging DNA.
Bacteria metabolism and respiratory cycles are also
impacted or inhibited. Cell death and, as a result,
bacterial growth suppression occurs as a result of
[12-14].  The
applications of green Ag,0O syntheses by fresh

pomegranate peel are evaluated in this work.

these  mechanisms biological

Experimental

Preparation of Ag,0 NPs

After thoroughly washing the plant pomegranate peel
under running tap water, 40 g of fresh peel was added
to 100 mL of deionized water using a magnetic stirrer
and set on a hot plate at 60 °C for 0.5 h. After
cooling, the pomegranate peel extract was filtered 3
times with Whatman filter paper No.1 to get a pure
aqueous extract, as shown in Fig. 1. AgNO; and the
fresh pomegranate peel extract used the green
synthesis method as precursors to synthesize Ag,O
NPs. 1.6 g of AgNO; was added to 100 mL of
deionized water and was placed on a hotplate-
magnetic stirrer at 60 °C for 1 h. Then, 5 mL of the
plant extract was mixed with 100 mL of AgNO;
solution by constant and continuous stirring for 1 h
under normal atmospheric pressure. The color change
indicated that Ag,O NPs had been synthesized (Fig. 2).

In the process of green synthesis of Ag,O NPs, the
plant extract functions as both reducing and
capping/stabilizing agent. The first step in the

Fig. 1 Pomegranate peel extract.
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Fig. 2 The stage of solution color change.

creation of nanoparticles is the blending of plant
extract with metal salt solution. The reaction color
changes as a result of the biochemical reduction of
the metal salt. Phytochemicals (flavonoids,
polysaccharides, alkaloids, proteins, phenolic
compounds, and cellulose) and secondary metabolites
found in plant extracts are used to create
nanoparticles that have the potential to reduce Ag
ions [6]. The reduction of metal ions to make metallic
nanoparticles most likely involves the oxidation of
polysaccharide hydroxyl groups to carboxyl groups.
Metal ions are initially activated from their
monovalent or divalent oxidation state to zero valent
state, and the reduced metal atoms are then formed. A
nanoparticle can aggregate to form many shapes. The
synthesis of varied size, shape, and morphological of
nanoparticles is caused by variations in the
composition and concentration of reducing agents in
plant extracts [7].

Preparation of  microbial

(inoculum)

suspension

The antimicrobial activity of synthesized Ag,0 NPs
was evaluated against (Staphylococcus aureus, S.
epidermis, and Escherichia coli) and one fungal
(Candida albicans) by well diffusion method. Muller-
Hinton agar (MHA) plates were prepared per
manufacturer's instructions. The test microorganisms
were seeded over the MHA plates using sterile cotton
swabs. Wells of 6 mm in diameter were punched over
the agar plates using a sterile puncher. After 150 pL
of Ag,0 NPs being added to each pore, the plates
were incubated at 37 °C (bacteria) and 30 °C (C.
albicans) for 24 h. After incubation, inhibition zones
around the wells confirmed the antimicrobial activity.
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The same procedure was repeated for all the test
strains. The clearance zones formed around each well
were measured, and the inhibition zone's average
diameter was taken to evaluate the antimicrobial
activity.

X-ray diffraction (XRD) analysis of Ag,O NPs

Figure 3 exhibits XRD analysis of strong peaks of the
thin film (Ag,O nanostructure) in a polycrystalline
structure. XRD patterns display diffraction peaks at
26 of 44.2°, 64.4°, and 77.4°, corresponding to cubic
phase structure with crystal planes (200), (220), and
(311), respectively; this result agrees with the card
number (00-004-0783) [15—17]. Whereas the peak at
26 of 37.94° is related to (200) plane of Ag,O F.C.C.
crystalline (No. 01-076-1393) [18]. Using Scherrer
formula, the crystallite size of the produced NPs was
estimated to be (37 = 1) nm [19-21].
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Fig. 3 XRD pattern of Ag,0 nanostructure.

Scanning electron microscopy (SEM) micrographs
revealed a comparatively spherical structure (Fig. 4)
with a size of ~ 64 nm. The separation of these
nanoparticles could be due to protein capping.

Fig. 4 SEM images of Ag,O thin film.

Ultraviolet—visible (UV-Vis) spectroscopy
studies of Ag,0 NPs and Tauc's relation

The spectra of the Ag,0O NPs' absorbance over the
range of 200900 nm can be seen in Fig. 5(a). The
wavelengths at which the apex is observed are
461 nm. The quantum size effect caused the band to
change to longer wavelengths as the nanoparticles

grew in size. This caused the band to move up the
frequency spectrum. The surface plasmon bands that
correspond to the completely or roughly spherical
shape of the Ag,0O NPs have been allocated to these
bands. These bands each reflect a different frequency
of collective oscillation for the electrons in the
conduction band. The wavelengths of the incident
electrons are much shorter than those of the incident
light waves, which corresponds to the sizes of Ag
NPs. Electrons, in this scenario, submit to the
electromagnetic field and propagate like a plasmon
wave [22-24]. In addition, the electric field generated
by light, denoted by the symbol Eo, remains
unchanged. Because the nuclei of the atoms do not
move, the oscillation of the electrons results in a
periodic charge separation. It creates oscillating
dipoles, the most significant amplitude at the surface
of the nanoparticles (Fig. 5(b)). When resonance
occurs, there is an increase in the ratio of the
amplitude of the local electric field in the particle to
the amplitude of the applied field.

The energy band gap (E,) of colloidal Ag,O NPs is
determined by Tauc's formula:
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Fig. 5 (a) Absorption spectrum of Ag,O NPs. (b) Oscillating
dipoles induced by light radiation of the Ag,0O NPs.
(¢) Graph of (ahv)* vs. photon energy (hv).
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ahv = C(hvE,)" )

where C is a constant, a is the absorption coefficient,
hv is the photon energy, and n indicates the type of
electronic transition.

The energy gap of Ag,0O NPs was 3.9 eV, as seen
in Fig. 5(c). The energy bandgap of Ag,0 NPs
colloidal solution is more remarkable than previously
published values; this could be attributed to particle
size and quantum confinement effect [25, 26].

The chemical bonds and functional groups of
colloidal Ag,0O NPs produced by fresh pomegranate
peel extract were analyzed using Fourier transform
infrared spectroscopy (FTIR) spectroscopy at
500—4 000 cm™, as displayed in Fig. 6. The bands in
colloidal Ag,0O NPs are visible at 3 363 cm”. The
peak corresponds to the hydroxyl group's stretching
vibration (H-bonded O—H stretch) [27, 28]. The
signal at 2 359.27 cm' corresponds to aliphatic
amines group C—N stretching. Ag,0 NPs reveal an
Ag=—0 bending vibration mode at 763 cm’,
suggesting metal-oxygen bonding formation [29, 30].
O—H bending vibration of an adsorbed water
molecule on the surface of Ag,0O NPs is at 1 658 cm™
[31, 32].
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Fig. 6 FTIR spectra of Ag,0 NPs.

This study tested pathogenic microbial (S. aureus,
S. epidermis, and E. coli) and fungal (C. albicans)
species using Ag,O NPs colloidal solution prepared
peel extract. The
concentration of Ag,O NPs employed in this test was
(0.1 mol/L). The halo around the well suggests that
Ag,0 NPs have an antibacterial action [33, 34]. The
respiratory process in the microbial cell walls is
inhibited by Ag,0 NPs' interaction with the
respiratory enzymes in the cell walls. Figures 7 and 8
show the inhibition zone of bacteria and fungi; the
diameter of inhibition zone for Gram-negative
bacteria E. coli and Klebsiella is 13 and 15 mm,
respectively. While the inhibition zone of Gram-

from fresh pomegranate

positive S. aureus and S. epidermis (15 mm in
diameter) and a Candida (15 mm in diameter) is
shown in Fig. 9. X-ray and SEM results show that the
Ag,O prepared by the green synthesis on the
nanoscale demonstrates that NPs can quickly enter
the cell wall. This result supports the idea that NPs
can quickly pierce the cell wall. Antimicrobial
activity is attributed to the high surface area-to-
volume ratio between silver NPs and cells. Also, free
radicals such as OH is verified by FTIR, the release
of Ag" ions, and ROS production [35-39].

Fig. 7 Evaluation of the effectiveness of Ag,O NPs as
antibacterial treatment.

Fig. 8 Evaluation of the effectiveness of Ag,0O NPs as
antifungal.

Because silver has a broad-spectrum activity and a
suggested mechanism of action that targets multiple
bacterial components, there is not a widespread
development of silver resistance [34]. This can be
attributed to the fact that silver resistance does not
occur frequently. Even though resistance to Ag is a
possibility, the rate of development appears to be

https://www.sciopen.com/journal/2150-5578
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Fig. 9 Diameter of inhibition zone of Ag,O NPs.

more delayed than that of alternative antimicrobial
agents. This suggests that there is a hope for the
development of Ag-based antimicrobial
therapies that can be used in combinatorial and mixed-

future

therapy applications [37]. However, the restricted
solubility of pure silver metal in aqueous solutions
has been one of the primary barriers to using silver as
an antimicrobial agent or in combination approaches
[38]. This has been one of the most significant
barriers. Our previous research and the research
presented here demonstrate a workable approach for
developing silver-based coatings that get around the
solubility problem by using silver oxide (Ag,0) [39].

Conclusion

We succeeded in synthesizing nanoparticles of Ag,O
using fresh pomegranate peel extract. This method is
simple and environmentally friendly. It also saves
many nanomaterials, where Ag,O has proven its
efficacy as an antibiotic, as shown by the results in
It can be used

this research work. in many

applications such as anticancer treatment and
treatment of worm damage that cause great economic

loss.
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