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Introduction

The toxicity of nanomaterials is at the fore-front 
of recent toxicity concerns highlighted by the Food 
and Drug Administration (FDA) of the United States 
of America. This follows the discovery that some 
nanomaterials which were earlier approved for clinical 
use contain some amounts of carcinogenic substances 
[1-3]. Particularly, the toxicity of titanium dioxide 
nanoparticles (TiO2 NPs) is an important issue in 
present-day toxicology [4-6]. Owing to their excellent 
near infrared reflective and electrical properties, TiO2 
NPs have achieved a wide range of applications, 
necessitating an assessment of their current toxicity. 
TiO2-based NPs have been specifically used in 
cosmetics [7], phamaceutical products [8, 9], food 
colouration [10], plastic products [11, 12], antifouling 
agents marine paints [13], photocatalysis and microbial 
boosting for soil remediation [7, 14], filters [15], 
bacterial treatment [16], and in the photothermal 
[17, 18], photodynamic and sonodynamic ablation of 
cancers [19, 20]. Many other new applications of TiO2 
NPs are underway or possibly in pilot production, 
making TiO2 NPs and their derivatives to be ranked 
among the most commonly-produced nanomaterials 
world wide [7]. Based on the afore-mentioned 
extensive applications of TiO2 NPs and their inclusion 
in commercial products, human exposure to these NPs 
and their derivatives either during production or end 
use is inevitable. A Recent study showed that even 

candies, sweets and bubble gums contain high amounts 
of TiO2 NPs (<100 nm) [10]. 

When NPs enter the body, they are usually 
transported to various systems via systemic circulation 
and are thereafter deposited in tissues or organs, 
causing toxicity [21, 22]. TiO2 NPs with size ranges 
between 5–100 nm can easily enter into rat lungs 
and then lymphatic drainage and blood vessels. They 
may also systemically reach the central-nervous and 
immune systems as well as the cardiovascular system, 
with the potential of being toxic if not eliminated from 
the body [23].

Nano-sized TiO2 has been reported to cause redox 
imbalance by way of increasing the production of 
reactive oxygen species (ROS) or by inactivating/
inhibiting the components of cellular antioxidant 
defence system [24]. The induction of oxidative stress 
by TiO2 NPs following mechanistic toxicological 
investigations has been reported to predominantly 
cause cell damage, impaired immune response, 
inflammation and genotoxicity [25]. In this paradigm, 
Gao and co-workers on the testicular damage and 
alterations in gene expression profiles in male mice 
caused by intragastric administration of TiO2 NPs 
[26]. It was observed that NPs crossed the blood-
testis barrier, got to the testis and resulted in testicular 
lesions, alterations in serum sex hormone levels, and 
sperm malformations. These researchers therefore 
inferred that the production and application of TiO2 
NPs should be with caution, particularly when the 
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persons are of reproductive age.

Up till now, toxicological studies with TiO2 NPs 
have been carried out mostly in mammals, animal 
models (mice) or small organisms such as Daphnia (a 
fish species) [5]. These studies reveal that the type and 
extent of damage by TiO2 NPs are strongly dependent 
on the physical and chemical characteristics of the 
NPs, which govern their reactivity and bioavailability 
[25]. For instance, the isoelectric points for TiO2 NPs 
range from pH 3.5 to 8, which may greatly affect 
the bioavailability of these NPs in the physiological 
environment [27]. Unfortunately, the effective size 
of particles, concentrations and their Zeta-potentials 
have been almost completely neglected in most of 
the studies on interaction of TiO2 NPs with biological 
systems [25, 27]. It has also been reported that upon 
UV irradiation, TiO2 NPs exhibit photoactivities which 
have been explored for numerous applications. It is 
rather worrisome that little attention has been focused 
on the toxic effects of these NPs upon UV irradiation, 
mainly to non-target organisms. Recent reports on the 
toxicity of these photoactivated TiO2 NPs have raised 
serious concerns among researchers as their long-term 
toxicity effects cannot also be ascertained [7]. 

Owing to the wide applications of TiO2 NPs and the 
ever-increasing synthesis of pristine and modified TiO2 
NPs, we believe that a review of their current toxicity 
is paramount. Undoubtedly, this will benefit various 
researchers in this field, the government, and other 
agencies concerned with the toxic effects of NPs. This 

review will therefore discuss the recent findings on 
the potential exposure hazards of TiO2 NPs to animal 
models, humans, and the environment by extension, 
with respect to the exposure routes and toxicity 
mechanisms of the NPs. 

Exposure Routes to TiO2 NPs

There are  numerous  routes  through which 
humans and animal models are exposed to TiO2 
NPs. Among these, intravenous injection remains 
the most prominent, especially for animal models 
during the testing of synthesized TiO2 NPs for various 
applications in vivo. Detailed discussion on some of 
these exposure routes (intravenous, intraperitoneal, 
and subcutaneous injections, prenatal, dermal, body 
implants, oral, inhalation, and intratracheal instillation) 
will be discussed in the following sub-sections. 
However, other routes to the exposure of TiO2 NPs 
include but not limited to abdominal/intra-abdominal 
exposure, intragastric administration, and intra-articular 
injection. Meanwhile, the exposure routes to TiO2 NPs 
as well as their transportation and distribution sites can 
be summarized in Fig. 1. 

Intravenous injection 

In nanomedicine, TiO2 NPs and their derivatives 
are directly injected intravenously into the blood 
vessels, thereby raising public concerns on the toxicity 
of these NPs to animals and their fate if translated 
to humans [28]. In this regard, Xu and co-workers 

Fig. 1  Toxicokinetics and accumulation sites of TiO2 NPs. The dotted lines arrows represent uncertainties.
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investigated the acute toxicity of TiO2 NPs on mice 
induced by intravenous injection [29]. They observed 
that the spleen of the mice administered with the 
NPs demonstrated higher tissue weight/body weight 
coefficients and lower kidney and liver coefficients. 
Even though the mice hearts showed no pathological 
effects, there were some damages observed in the 
brain, liver, kidneys, lungs, and spleen of the mice, 
induced by the TiO2 NPs. Furthermore, they reported 
that low doses of the TiO2 NPs caused acute toxicity 
symptoms such as increased white blood cell count, 
decreased food and water intake, and physical activity, 
while the highest dose (1387 mg/kg body weight) 
caused death on the second day after intravenous 
injection. 

In a study by Yamashita and co-researchers on 
pregnant mice intravenously injected with 0.8 mg of 
35 nm TiO2 NPs for two consecutive gestational days, 
pregnancy complications such as the accumulation of 
the NPs in the liver, brain and placenta of the foetus 
and smaller uteri and foetuses were observed [30]. In 
another study, it was reported that TiO2 NPs converted 
benign mouse fibrosarcoma cells to aggressive tumor 
cells [31]. The researchers intravenously injected 
female C57BL/6 mice with 5 mg/0.1 mL hydrophilic 
and hydrophobic rutile TiO2 NPs separately treated 
with ZrO2Al(OH)3 and observed both metastatic and 
carcinogenic abilities arising from tumour cell lines 
that were obtained from QR-32 cells. These QR-
32 cells were reported to be tumorigenic following 
injection in sites pre-implanted with hydrophilic TiO2 
NPs for 30 or 70 days. Also, van Ravenzwaay and 
others intravenously injected male Wistar rats with 
TiO2 NPs and monitored their behaviors up to 28 days 
[32]. They observed that these NPs mainly accumulated 
in the spleen and liver of the rats, subsequently causing 
an inflammation of these organs. This was explained by 
an increase in total cell count, lactate dehydrogenase, 
Γ-glutamyl transpeptidase, polymorphonuclears, ALP, 
total protein content, and N-acetyl-glucosaminidase in 
bronchoalveolar lavage. In a different experiment, TiO2 
NPs also caused liver damage and significantly induced 
the expression of glutathione reductase in male Wistar 
rats which were injected intravenously with 5 mg/kg 
body weight of the NPs for 5 days [33].

Geraets and co-workers also observed the rapid 
distribution of free titanium through the systemic 
circulation in the heart, kidneys, liver, lungs, spleen, 
reproductive organs, thymus, and brain of mice 
following a single and repeated intravenous injection 

of TiO2 NPs [34]. The maximum relative decrease of 
26% was observed during the 90-day post-exposure 
period. Inasmuch as little variations in kinetic profile 
were also observed among the various particles, these 
could not be clearly related to the hydrophobicity or 
the primary TiO2 NPs size differences. 

Furthermore, Iqbal and others intravenously injected 
mice with TiO2-Mn3O4 Janus NPs and monitored the 
accumulation of these NPs in the mice hearts, livers 
and kidneys up to 160 mins [35]. They observed that 
the Janus NPs showed low accumulation in the hearts 
but demonstrated maximum accumulation in the 
livers and kidneys between 30 to 50 mins and sharply 
declined at 60 mins. Su and co-researchers evaluated 
the toxicity of Janus Fe3O4-TiO2 NPs (20-25 nm) and 
the parent TiO2 NPs (7-10 nm) on Sprague Dawley 
rats following intravenous injection [19]. Extensive 
biosafety analyses (hematological, histopathological, 
biochemical, Western blot analysis, and element 
content) were conducted on the rats at 30 days post-
injection of the NPs. The elemental analysis revealed 
slight accumulation of Ti in the hearts, livers and 
spleens of the rats treated with Fe3O4-TiO2 NPs. On 
the other hand, the rats treated with spherical shaped 
TiO2 NPs revealed significant accumulation of Ti in 
the lungs, livers and spleens. They observed that both 
the Janus Fe3O4-TiO2 and the parent TiO2 NPs have 
potential for causing histopathological abnormalities. 
These NPs were also found to have potential for 
inducing certain apoptotic or inflammatory-related 
molecular protein upregulation in the livers of the 
rats. Some alterations in the liver function to a certain 
degree were also observed. Additionally, at 30 mg/kg, 
the TiO2 NPs demonstrated much more sever adverse 
effects than the Janus counterparts.

In a different experiment, Ren and co-workers 
intravenously injected Blab/c mice with various doses 
(1, 5, 25 mg/kg body weight) of hydrogenated black-
TiO2 NPs functionalized with PEG (H-TiO2-PEG) and 
monitored the drinking, eating, activity, excretion and 
nuerological status of the mice models [20]. After one 
month post intravenous injection, no obvious tissue 
damage or lesions including necrosis, pulmonary or 
inflammatory fibrosis was observed (Fig. 2(a)).

 Additionally, they analysed the red blood cell 
(RBC), white blood cell (WBC), platelet (PLT), and 
their relevant data such as lymphocyte (LY), neutrophil 
(NE), monocyte (MO), basophil (BASO), hematocrit 
(HCT), eosinophil (EO), hemoglobin (HGB), mean 
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corpuscular volume (MCV), mean corpuscular 
hemoglobin (MCHC), platelet distribution width 
(PDW-CV), red blood cell distribution width (RDW-
CV), and mean platelet volume (MPV). No obvious 
variation was observed in the blood hematological 
analysis of the control and H-TiO2-PEG-injected mice 
groups (Fig. 2(b)). Six important hepatic indicators for 
liver functions (albumin, ALB; direct bilirubin, DBIL; 
alkaline phosphatase, ALP; globin, GLOB; gamma 
glutamyl transpeptidase, GGT), three indicators for 
kidney functions (creatinine, CREA; urea nitrogen, 
UREA; uric acid, URCA), triglyceride (TG), total 
cholesterol (CHOL), and glucose (GLU) were also 
evaluated by the blood biochemical analysis (Fig. 
2(c)). There was no obvious change in these indicators, 

suggesting the non-toxicity of the NPs at the injected 
doses for one month. 

Recently, black TiO2 NPs have gained tremendous 
attention in tumor PTT due to their efficient conversion 
of light energy to heat and ROS [17, 18, 36-38]. In a 
study by Mou and co-workers, PEGylated black TiO2 
NPs were synthesized by low temperature aluminium 
reduction and applied for dual image-guided PTT/
PDT [37]. Interestingly, image-guided tumor therapy 
is at the fore-front of present-day strategies for cancer 
treatment [39, 40]. In order to exploit this strategy, 
Mou and co-workers further investigated the in vivo 
toxicity effects of pristine and PEGylated black TiO2 
NPs to mice main organs (heart, spleen, kidney, lung, 
liver, and brain) and blood. They found that both the 

Fig. 2  (a) Histological analyses of mice main organs injected with saline or various doses of H-TiO2-PEG NPs (Scale bar = 20 μm). 
(b) Hematological and (c) blood biochemical analyses of the mice. Data are expressed as the mean ± standard (n = 3). Statistically 
significant differences were evaluated using the Student’s t-test (* p < 0.05, ** p < 0.01, ns > 0.05). Reproduced with permission [20].
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pristine and PEGylated NPs did not induce obvious 
toxicities in the mice main organs and blood after 20 
days intravenous injection of 10 mg/kg NPs. Also, 2.5-
10 mg/kg black TiO2 NPs containing Fe@γ-Fe2O3 were 
intravenously injected into healthy BALB/c mice in a 
study by Wang et al. [38]. They found that no obvious 
toxicity was induced by the NPs in comparison with 
the control (saline) group after 15 days.

Saeed and co-researchers investigated the in 
vivo toxicity of black TiO2 (b-TiO2) NPs using the 
histological and hematological analysis following 
intravenous injection of the NPs into female Balb/c 
mice [17]. Typically, they harvested the organs (liver, 
heart, lungs, kidneys, and spleen) and also collected 
the blood of the mice 30 days post-injection of 500 
µg/mL b-TiO2 NPs, followed by digestion with aqua 
regia at 90 °C and quantification by ICP-OES. These 
researchers observed that the blood indices and 
parameters maintained normal levels (Fig. 3(a)). Also, 
no significant organ damage, lesion or inflammation 
occurred in comparison with mice control group (Fig. 
3(b)). However, the b-TiO2 NPs accumulated in the 
livers, with low concentrations observed in the kidneys 

and hearts of the mice after 24 h post-injection of 
the NPs. These effects were also compared to those 
observed for Fe3O4 nanoflowers (Fe-NFs).

More recently, the toxicity of Fe3O4-black-TiO2 
nanocomposites (Fe-Ti NCs) was evaluated by 
intravenously injecting female nude mice with 200 µL 
(500 µg/mL) of the NCs [18]. The mice were sacrificed 
one month post-injection to collect their blood, hearts, 
kidneys, livers, spleens and lungs for hematological 
and histological analysis. They observed no toxic 
effect or behavioural change in the mice arising from 
the injection of the Fe-Ti NCs, while normal levels of 
blood indices and parameters were recorded. Taken 
together, these reports establish intravenous injection 
as a potential exposure route to TiO2 NPs, even at low 
doses.

Intraperitoneal injection

Though controversial, intraperitoneal injection 
is widely employed for the administration of 
chemotherapeutic drugs into humans for the treatment 
of certain cancer types such as ovarian cancer, where 
it has been recommended as a standard care method 
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[41]. It particularly refers to the injection of an 
active ingredient into the body cavity (peritoneum) 
[42]. Intraperitoneal studies have been carried out to 
determine the toxicity levels of injected TiO2 NPs in 
humans or animal models [5]. To this end, Valentini and 
co-workers treated rats by intraperitoneally injecting 
TiO2 NPs with different doses (0.5-16 mg/kg) for the 
toxicity investigation of same [43]. Accumulation of 
Ti in the liver and kidney was observed by inductively 
coupled plasma atomic emission spectroscopy (ICP-
AES). This accumulation induced physiological and 
morphological changes in the liver and kidney of the 
rats. In the liver, the hepatocytes located in the vicinity 
of the centrilobular veins were mostly affected. 
Furthermore, the toxicity of anatase-TiO2 NPs (5 nm) 
in mice after intraperitoneal injection (5-150 mg/kg 
body weight) for 14 days was investigated by Liu et al. 
[23]. They reported that the body weight coefficients 
of the lung and brain decreased, whereas those for 
the liver, kidney and spleen increased, while that for 
the heart showed little change. The TiO2 NPs caused 
damage to the liver, kidney, and myocardium, and also 

caused an impairment of the lipid balance and blood 
sugar in the mice. Therefore, they described the order 
of NP accumulation in the organs as liver > kidneys > 
spleen > lung > brain > heart. 

Younes and co-researchers reported an increase in 
blood platelet count after the intraperitoneal injection 
of TiO2 NPs (20 mg/kg) into adult Wistar rats for 20 
days [44]. They reported that the injected NPs showed 
potential for inducing pathological changes in the 
liver of rats, following the increased accumulation of 
Ti in the liver, and the lung and brain of the rats (Fig. 
4). This was determined by the increase in ratio of 
the aspartate aminotransferase (AST) to the alanine 
aminotransferase (ALT), and lactate dehydrogenase 
(LDH) activities. 

Similarly, Guo and co-workers reported an increase 
in both the AST/ALT enzyme ratio and blood nitrogen 
urea [45]. This observation followed the intraperitoneal 
injection of high dose (500 mg/kg body weight) TiO2 

NPs for 10 days, thus providing evidence for the 
toxicity of the NPs to the liver and renal system of 

Fig. 4  Histopathology of the liver tissue (H&E stain) in male rats caused by intraperitoneal administration with TiO2 NPs. The rats 
were sacrificed (b, e) 1 day or (c, f) 14 days after the last injection and (a, d) control. a, b, c ×100 and d, e, f ×400. The open and 
closed arrows represent sinusoïdal dilatation and vacuoles, respectively; *congestion; #cellular space; vvein; and ssinusoid. Histology 
of kidneys of (g) control rats and treated rats sacrificed (h) 1 day or (i) 14 days after the last injection, ×100. The arrows represent the 
glomerulus. Reproduced with permission [44].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Institute of Cancer Research (ICR) mice. In another 
study, TiO2 NPs (3.6 nm) were intraperitoneally 
injected (324, 648, 972, 1296, 1944 and 2592 mg/
kg body weight) for 24 and 48 h, and then 7  and 14 
days into mice [46]. The NPs were reported to have 
deposited in the liver, kidney, spleen and lung, and 
induced glomerular swelling, hepatocyte apoptosis and 
fibrosis in the mice. It then follows that intraperitoneal 
injection of TiO2 NPs at low and high doses have 
potentials for exposing animals to these NPs, with 
attendant toxicities.

Subcutaneous injection and prenatal exposure

In a typical subcutaneous injection, the active 
ingredient is administered just below the skin, which 
is composed of mainly fatty tissues with little blood 
flow. As such, the injected active ingredient is slowly 
absorbed, sometimes up to or over 24 h [42]. Apart 
from TiO2 NPs, other substances that are injected 
subcutaneously include but not limited to epinephrine, 
insulin, and growth hormones [47].

The subcutaneous injection of TiO2 NPs to pregnant 
mice has been attributed to some pathological and 
functional impairments such as the olfactory bulb 
of the brain and reduction in sperm production 
[48]. To investigate this, Umezawa and co-workers 
subcutaneously injected 0.4 mg/body weight TiO2 
NPs into pregnant mice on 6-15 days of gestation 
period [49]. It was observed that the NPs caused 
dysregulation of gene expression in the dopamine 
neuron region-related system and differential 
expression of genes which are associated with the 
striatum in the prenatal period. Similarly, TiO2 NPs 
were subcutaneously injected on gestation days 6, 
9, 12, and 15 as reported in a study by Shimizu et 
al. [50]. Following a developmental investigation of 
male fetuses and pups using a contemporary DNA 
(cDNA) microarray analysis in combination with 
Medical Subjects Headings (MSH) terms information 
and gene ontology,  changes in gene expression were 
observed. These changes were particularly recorded 
in the genes responsible for neurotransmitters and 
psychiatric diseases, brain development and apoptosis, 
and oxidative stress in the brain.

Another study reported significant oxidative damage 
to the lipids and nucleic acids within the brain of 
new born mice [51]. Furthermore, during adulthood, 
depressive-like behaviors induced by stress during the 
gestation period were observed in the force-swimming 
and sucrose preference tests. It has also been reported 

that prenatal exposure to TiO2 NPs can affect the 
central nervous system, particularly the development 
of the central dopaminergic system in offspring 
[52]. To illustrate this, pregnant Slc:ICR mice were 
subcutaneously injected with 25-70 nm TiO2 NPs 
(100 μL at 1 mg/mL) on gestational days 6, 9, 12, 15, 
and 18. An investigation of the offsprings (newborn 
pups) revealed that the levels of monamines including 
dopamine, 3-methoxytyramine-hydrochloride, 
homovanillic acid, and 3,4-dihydroxyphenylacetic acid 
increased in the neostriatum and prefrontal cortex (Fig. 
5(a)). Also, behavioral changes in the adult rats were 
observed at postnatal days 41 (Fig. 5(b)) and 43 (Fig. 
5(c)).

Put together, these reports reveal that various forms 
of toxicity such as oxidative stress and changes in gene 
expression can be traced to the subcutaneous injection 
as an exposure route to TiO2 NPs.

Dermal/skin exposure

The extensive utility of TiO2 NPs in sunscreens and 
other cosmetics has attracted widespread concern about 
the toxicity of these NPs as regards their potential 
to penetrate into the skin and enter the keratinocyte 
cell lines [7, 53]. However, under normal conditions, 
TiO2 NPs (an inorganic particle) may not have the 
potential for intact skin penetration owing to the strong 
protective effect of the stratum corneum (SC) [54]. 
The incapability of NPs to penetrate the skin has been 
demonstrated in some studies [55-57], while some 
other studies have shown otherwise [58-60]. 

In this regard, an in vitro study demonstrated that 
anatase-TiO2 (0–150 μg/ml) induced cytotoxicity in 
the HEL-30 mouse keratinocyte cell line [53]. It has 
also been demonstrated that TiO2 NPs could penetrate 
hairy skin when applied as an oil-in-water emulsion 
[58]. In a typical experiment, 5% of 20 nm TiO2 NPs 
was applied as an oil-in-water emulsion or aqueous 
suspension to human skin following the stripping 
method. It was observed that the NPs mainly from the 
oily dispersion penetrated through the hair pores or 
follicles of the human skin. In a related study, it was 
shown that short-term exposure to about 20 nm well-
crystallized spherical-shaped TiO2 NPs could induce 
concentration-dependent biochemical impairment in 
the skin of Wister rats [61]. In the study (14-day acute 
exposure), 42 mg/kg of the TiO2 NPs was topically 
applied on the rat skin. Both renal and hepatic toxicity 
were observed in the treated rats attributable to the 
dermal exposure. It was therefore inferred that the NPs 
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could have penetrated the rat skin through the hair 
follicles. Some other researchers opined that TiO2 NPs 
can penetrate via certain injuries such as sun burns and 
physical bruises on the skin [42]. 

On the other hand, Sagawa and co-workers 
demonstrated that non-coated and silica-coated TiO2 
NPs did not penetrate the skin of mice, rats or human 
epidermis models [62]. The silica-coated and non-
coated TiO2 NPs were suspended in Pentalan 408 and 
silicone oil, respectively, in a two-stage skin chemical 
carcinogenesis model. The animal models and their 
wide types were treated with 7,12-dimethylbenz[a]
anthracene (DMBA) prior to TiO2 NPs treatments. 
No increase in the occurrence and abundance of skin 
tumors, particularly the carcinoma and squamous cell 
papilloma was observed in the animal models and 
their wide types after the DMBA initiation. This was 
attributed to lack of penetration of the skin by the 
TiO2 NPs. In a related study, mice were treated with 
DMBA and 12-o-tetradecanoylphorbol 13-acetate as 
initiator and positive control promoter, respectively, 
in a 20-week post initiation investigation of the two-
stage skin chemical carcinogenesis [63]. Non-coated 
and industrial material-grade-coated TiO2 NPs (5, 10, 
and 20 mg/kg body weight) were applied to the skin 
of 7-week old female CD1 (ICR) mice. There were no 
observed changes in the body weight, survival rate, and 
general conditions of the mice models, suggesting that 

the NPs do no post-initiation potential for mice skin 
penetration and carcinogenesis. 

Furthermore, Crosera and co-workers applied 1.0 
g/L TiO2 NPs in synthetic sweat solution on Franz 
cells using intact and needle-abraded human skin, and 
monitored the toxicity of the NPs for 24 h [64]. The 
cytotoxicity studies by the MTT and AlamarBlue® 
assays, and propidium iodide uptake revealed the 
absence of Ti in the receiving media after 24 h. 
However, 0.47 and 0.53 μg/cm2 of the TiO2 NPs were 
detected in the epidermal and damaged skin layer, 
respectively, after the 24-h exposure period. It was 
also reported in a related study that various sizes of 
TiO2 NPs (4, 10, 25, 60, and 90 nm) did not induce 
any form of toxicity as they could not penetrate 
through the stratum corneum [65]. This inference 
was made after the exposure of isolated porcine skin 
to the TiO2 NPs for 24 h. However, the 4 and 60 nm 
TiO2 NPs penetrated through the horny layer and 
were located in deep epidermis layer of pig ear after 
exposure for 30 days. Additionally, the various sizes 
of the TiO2 NPs penetrated the skin, reached different 
tissues, and induced diverse pathoogical damages 
in several major organs of mice, following a 60-day 
dermal exposure in hairless mice. It then follows that 
the toxicity potential of TiO2 NPs via dermal/skin 
exposure is hitherto controversial and require in depth 
studies.

FIg. 5 (a) The effect of prenatal exposure to TiO2 NPs on the oxidative damage to nucleic acids in rat hippocampus. (b) The force-
swimming test performed on postnatal days 41 and recorded as immobility behavior. (c) The sucrose preference test performed on 
postnatal day 43 and recorded as preference index. Preference index = (sucrose solution intake - tap water intake)/(sucrose solution 
intake + tap water intake) × 100. Reproduced with permission [52].
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Body implants

Recent  advances in  or thopaedic surgeries , 
especially endoprosthetics have been drammatically 
revolutionized by medical implants. However, 
autoimmune reactions have hampered the vast 
application of medical implants and cardiovascular 
stents [66]. In the light of this, researchers have over 
time employed Ti and its alloys, particularly nano-
sized TiO2 as effective surface coatings for these body 
implants in order to mitigate the autoimmune reactions 
[67]. Furthermore, some researchers opined that in 
endo-prosthetic surgeries, safe tissue-recognition 
scaffolds are achievable with TiO2 NPs [68]. Following 
this, for the purpose of ameliorating tibia-tarsal or 
acetabulum hip joint fractures, Sul synthesized TiO2 
nanotubes (15 and 700 nm thickness and length, 
respectively), and applied same for prosthetic articular 
surgery [69]. However, Ti-based implants undergo 
surface degradation (wear and corrosion) with 
consequent release of the corresponding metal ions and 
solid wear debris in the body, thereby leading to the 
popular peri-implant inflammatory reactions [70].

In a related study, TiO2 nanotubes were applied in 
enhancing strong bone adhesion in vivo, osteoblast 
adhesion in vitro, and bone mineralization [71]. It 
was shown in a pull-out testing after implantation 
of the nanotubes for four weeks that about a nine-
fold enhancement in the strength of bone binding was 
attained compared with when TiO2 gritblasted surfaces 
were used. Additionally, new bone formation, greater 
phosphorus and calcium levels, and improved bone-
implant contact area were observed on the surfaces of 
the nanotubes from the histological analysis.

Under  mechanica l  s t ress  and /or  impa i red 
physiological conditions, there are indications that TiO2 
NPs-based body implants can release some amounts 
of biologically related debris in both nanometer and 
micrometer ranges [25]. These debris are suggested to 
be associated with major systemic and inflammatory 
diseases [72]. In this regard, Wang and co-workers 
investigated the toxicity of anatase TiO2 NPs applied 
as medical implants on rat models [73]. They injected 
0.2-20 mg/kg body weight of the NPs into the rats and 
observed that the major organs such as lung, liver, and 
heart were affected. In general, a maximum diameter 
of about 50 nm of the NPs moved across the synovial 
capillary wall, resulting in lymphocyte and plasma 
infiltration, fibroblast proliferation in the knee joint 
and synovial hypotrophy. There were also evidences 

of lipid peroxidation and oxidative stress in the 
exposed synovial fluid. Furthermore, in the alveolar 
macrophages and vascular endothelial cells, a brown 
deposit of particulates was observed, buttressing the 
toxic effect of the NPs. Put together, available literature 
reveal that irrespective of the size, body implants with 
TiO2 NPs provides an exposure route to these NPs.
Oral or gavage exposure

Nano-TiO2 has found application in food colorants, 
toothpaste, and nutritional supplements on a large 
scale. It is expected therefore, that the oral exposure 
to these NPs may occur via the consumption of such 
products [66]. The large scale utility of TiO2 NPs 
in food and other domestic products dates back to 
its approval by the United States Food and Drug 
Administration (FDA) in 1966, which allows up to 1% 
of the NPs in these products and food [74]. 

The gastrointestinal tract, an exchange/barrier 
system, is the most crucial entry route for NPs into the 
body [75]. The major absorption of NPs takes place via 
the epithelial villi and microvilli of the large and small 
intestines [25]. Recently, numerous efforts have been 
devoted to the development of effective carriers for the 
mitigation of oral exposure to nano- and microparticles 
[75-78]. Based on human intake and internal organ 
concentrations to account for long term accumulation, 
Heringa and co-researchers inferred that TiO2 NPs 
are potentially toxic to the liver and possibly the 
reproductive organs [74]. They attributed this toxicity 
to the consumption of the NPs via food, supplements 
and even toothpastes.

In a study by Pele and co-researchers, 100 mg 
pharmaceutical/food grade TiO2 NPs were orally 
administered to human volunteers [9]. After 0.5 to 
10 h of the ingestion, blood samples were collected 
and analysed for total Ti concentration by inductively 
coupled plasma mass spectrometry (ICP-MS) and 
for the presence of reflectant bodies (particles) by 
dark field microscopy. The results for the blood film 
analyses showed early absorption of the NPs (2 h) with 
a peak maximum at 6 h post-ingestion. The presence of 
these reflectant particles in the analysed blood samples 
roughly mirrored the levels of total Ti by ICP-MS, 
showing convincing evidence for the latter being a 
measure of the TiO2 NPs absorption. 

Furthermore, 250 mg/kg body weight of anatase 
TiO2 NPs (5 nm) were orally administered to mice 
for 30 days as reported in a study by Duan et al. [79]. 
They observed that whereas the treated mice lost 
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weight, the relative weights of the liver, spleen, and 
kidney increased. The haemostasis of the immune 
system was severely affected, possibly due to the 
damage caused by the NPs on the spleen. Of course, 
the spleen is the largest immune organ in animals and 
as such, very crucial for immune response. In a related 
experiment, 2 mg/kg body weight of anatase TiO2 NPs 
(20-60 nm) were also orally administered to Sprague-
Dawley rats per day for five consecutive days [80]. 
Following an ICP-MS analysis, a significant amount 
of Ti was observed in the spleen and the ovaries of 
rats which were exposed to high TiO2 NPs dose. The 
ICP-MS analysis was complemented with scanning 
electron microscopy (SEM) to establish the presence 
of particle agglomerates/aggregates in the spleen. 
Furthermore, orally administered TiO2 NPs have also 
been reported to cause lung cancer in rats [81]. The 
rats were administered with 40, 200, and 1000 mg/
kg body weight of the NPs (33 and 160 nm) daily for 
seven consecutive days. It was also observed that the 
NPs induced micronuclei and DNA damage in bone-
marrow cells and liver, apoptosis in the forestomach, 
and increased mitotic index in both the colon epithelia 
and forestomach.

Contrary to the observed toxicity of orally 
administered TiO2 NPs on animal models, some 
researchers have reported no significant increases in Ti 
levels after treating some animal models with various 
doses of the NPs [82-84]. In a typical experiment, 
Sprague-Dawley rats were orally administered 5 mg/
kg body weight of TiO2 NPs (40 nm) [83]. Again, 
following an ICP-MS analysis, no translocation of Ti 
into the urine or blood from the gastrointestinal tract 
was observed at 96 h post administration. Even after 
4 days of administration, the liver, kidney and spleen 
obtained from the sacrificed rats showed no presence of 
Ti. Similarly, 1042 mg/kg body weight of TiO2 NPs (26 
nm) were orally administered to Sprague-Dawley rats 
per day for 90 days as reported in a study by Cho et 
al. [85]. There were also no presence of Ti in the liver, 
kidney, brain tissues, and spleen of the rats as analyzed 
by ICP-MS, indicating low bioavailability of the NPs. 
Recently, Chen and co-researchers orally administered 
2.5 mg/kg body weight of TiO2 NPs to mice per day 
for seven consecutive days, which was equivalent to 
the human dietary intake of TiO2 NPs [82]. No obvious 
toxicity was observed in the mice which were orally 
administered with the NPs, following investigations of 
their gut mitochondria and the development of colitis-
like symptoms. 

Taken together, the biokinetic behaviour of TiO2 
NPs is size dependent and there is a low systemic 
absorption of orally administered NPs with average 
sizes >100 nm [86]. This inference on the size-
dependent toxicity of TiO2 NPs oral administration 
is supported by the report which showed that 25 nm 
anatase TiO2 NPs are more toxic than their 145 nm 
counterparts [87].

Inhalation (nasal) and intratracheal instillation 

exposures

The occupational and/or environmental exposures 
to NPs through inhalation may affect the respiratory 
system, resulting in increased risks of lung cancer, 
b lockage of  interalveolar  areas ,  presence of 
inflammatory cells, and fibrosis [88]. These NPs can 
penetrate from the lungs to different other organs of the 
body via blood circulation and upregulate inflammatory 
proteins (MCP and MIP) and class I MHC genes by the 
Th2-mediated pathway [89]. Experimental evidence 
obtained from animal inhalation studies carried out 
using TiO2 NPs classified these NPs as occupational 
carcinogen by the National Institute for Occupational 
Safety and Health and as “possibly carcinogenic to 
humans” by the International Agency for Research on 
Cancer [25]. 

Undoubtedly, the exposure of humans to TiO2 NPs 
by inhalation can arise in work places during the 
handling of these NPs. Hitherto, no data is available 
to convincingly demonstrate the absorption of TiO2 
NPs in humans through inhalation. However, it has 
been reported that factory workers in the production of 
TiO2 NPs may show adverse cytotoxicity responses via 
the inhalation of relatively high air-borne amounts of 
these NPs [88]. In this regard, Zheng and co-workers 
opined that the widespread utility of TiO2 NPs may 
increase the threat of combined exposure of these NPs 
with other environmental pollutants [90]. This was 
confirmed by their observation that in combination 
with bisphenol A, there was an increased movement of 
TiO2 NPs into exposed cells, resulting in a synergistic 
toxicity through oxidative stress, which induced 
micronuclei formation and DNA double-strand breaks.

Muhlfield and co-researchers demonstrated that 
some fractions of TiO2 NPs (20 nm) were rapidly 
transported from the airway lumen to the interstitial 
connective tissue of male WKY/NCrl BR rats [91]. 
These rats were exposed to an aerosol containing 0.11 
mg/m3 of the TiO2 NPs and each lung compartment 
was analyzed at 1 and 24 h post exposure by energy 
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filtering transmission electron microscopy. It was also 
observed that the residence time of the NPs in each 
lung compartment of the respiratory system depended 
on the exposure time as the connective tissue and the 
capillary lumen were the preferential targets of the NPs 
at 1 and 24 h, respectively. In a related experiment, 
male Wister rats were exposed to 10 mg/m3 of TiO2 
NPs in a 6-hourly inhalation study for five consecutive 
day [32]. Majority of the inhaled NPs were found 
to be deposited on the lungs, while some amounts 
translocated to the mediastinal lymph nodes. These 
deposited NPs were responsible for the observed 
macrophage activation and neutrophilic inflammation 
in the rat lungs. 

Over time, the lack of ultra-sensitive in vivo NP 
detection methods have made some researchers suggest 
that about 1% of NPs which are deposited in the 
lungs actually translocate to the blood and enter other 
vital organs [92, 93]. In the light of this, a nanoscale 
hyperspectral microscope was recently employed to 
spatially observe and determine the profile of TiO2 NPs 
after pulmonary deposition in adult female C57BL/6 
mice [94]. The mice were exposed to 18 or 162 µg/kg 
body weight of the NPs via intratracheal instillation 
and were subsequently sacrificed after 24 h. The 
NPs were observed to have translocated to the heart 
and liver at low doses and to the blood at high NP 
doses. Moreover, an activation of complement factor 
3 in blood, as well as inflammatory processes and 
complement cascade in the heart  were also observed 
using ELISA analysis and global gene expression 
profiling.

Furthermore, the biokinetics of 70 nm commercial 
and 48V-radiolabeled [48V] TiO2 NPs were investigated 
in female Wister-Kyoto rats in a study by Kreyling et 
al. [95]. They administered a single dose of  40-240 µg/
kg body weight of the NPs via intratracheal instillation 
at retention time points ranging from 1 h to 28 d. The 
quantitative distribution of the NPs in all tissues and 
organs as determined with a high-sensitive radiotracer 
technique revealed the translocation of about 4% of 
the initial NP dose from the lung via the air-blood 
barrier at 1 h post exposure. These translocated NPs 
were mainly retained in the carcas, while about 0.3% 
remained after 28 d of the exposure. Similarly, Fischer 
344 rats were exposed to 39.24 and 179.61 µg/kg body 
weight of TiO2 NPs by intratracheal instillation in a 
single and repeated dose, respectively, for 7 days [96]. 
Increases in bronchoalveolar lavage fluid neutrophils 
and heme oxygenase-1 were observed at 4, 8, and 24 h, 

and even after 7 d of the exposure. In summary, these 
reports point to inhalation and intratracheal instillation 
as a potential exposure routes to TiO2 NPs. 

In summary, studies point to various toxicity 
concerns of TiO2-based nanomaterials from the 
exposure routes discussed above, but with negligible 
reservations by some researchers. Notwithstanding, 
TiO2 NPs are extensively used in numerous aspects 
ranging from food industry to cancer treatment.

Environmental Impacts of Nano-

TiO2 

Owing to the vast utility of TiO2 NPs in food, 
industries, health care, and other consumer products, 
these NPs can after use get into the sewage system, 
subsequently entering into the environment biosolids 
applied to agricultural land, effluent discharged to 
surface waters, landfill solids, or incinerated wastes 
[10, 97]. Nano-sized TiO2 has over time demonstrated 
both positive and negative impacts on the environment. 
For instance, the photocatalytic ability of these 
NPs have been exploited in wastewater treatment 
and soil remediation for the photodegradation of 
various organic pollutants in water [98] and soil [99], 
respectively, and microbial films against pathogens 
[7]. More specifically, TiO2 NPs were recently applied 
for the alkaline medium-favoured photodegradation 
of methylene blue [100], and in earlier studies 
for the photodegradation of some pesticides such 
as methamidophos [101],  atrazine [102],  and 
chlorotoluron [103]. On the other hand, TiO2 NPs 
have been reported to induce various toxic effects on 
fish and other aquatic species [104], plants [105, 106], 
and soil biota [107]. Until now, reports on the ability 
of TiO2 NPs to mitigate air pollution or otherwise 
are quite vague [88, 108]. The following section will 
elaborate the influence of TiO2 NPs on environment.

Effects of TiO2 NPs on aquatic species

The wide industrial application of TiO2 NPs 
notwithstanding, little attention has been given to 
their environmental fates after disposal. Additionally, 
there is still no specific regulation for discarding 
nanomaterials into aquatic systems [109]. In aqueous 
solutions, TiO2 NPs tend to aggregate/agglomerate or 
interact with suspended organic matter, and then get 
deposited on the sediment [110]. However, about 52-
86 μg/L of the TiO2 NPs remain suspended in the water 
column, mostly near sewages [111]. In either or both 
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cases, TiO2 NPs discarded into aquatic systems will 
most likely be absorbed by the resident biota, with 
attendant negatives. 

Irrespective of all dilution and detection limit 
issues, TiO2 NPs from sunscreen lotions were detected 
in samples collected from the Old Danube Lake, 
Vienna, Austria in a study conducted by Gondikas 
et al. [104]. In some freshwater Teleostei, TiO2 NPs 
reduced the hepatic glutathione content and inhibited 
hepatic superoxide dismutase (SOD) and catalase 
(CAT) enzymes after subchronic exposure [112]. It 
has also been observed that TiO2 NPs are possibly 
taken up by freshwater Teleostei through their gills 
during respiration [113] and/or via diet through the 
intestine, and from these organs, the NPs may get to 
the blood stream [114]. In the blood, the TiO2 NPs may 
cause genotoxic damage (formation of micronuclei 
and nuclear abnormalities) to erythrocytes as it was 
observed in marine fish [115]. 

Carmo et al. reported the reduction of hemoglobin 
content and white and red blood cells in freshwater 
fish after exposure to TiO2 NPs [15]. They treated 
Juvenile fish with various amounts of TiO2 NPs (1-
50 mg/L) for 48 h or 14 days as acute and subchronic 
exposures, respectively. It was also observed that the 
NPs demonstrated potential for increasing energy 
expenditure by affecting the immune system, thereby 
decreasing the ability of the fish to avoid predators 

and fight pathogens. In addition to the toxic effect of 
TiO2 NPs on blood cells, they may also be distributed 
to several organs through the blood stream, thereby 
modifying cellular metabolism and could possibly 
lead to some form of physiological imbalance of these 
affected organs [5, 15, 113]. Furthermore, exposure 
to TiO2 NPs may cause damages to liver tissues of 
aquatic species, such as the presence of disordered 
cells, apoptotic nuclei, and foci with lipid accumulation 
[114].

The liver, which is the main organ for xenobiotic 
metabolism in fish, may accumulate TiO2 NPs with 
a resultant redox imbalance [116]. Even at low 
concentrations, TiO2 NPs accumulated in other organs 
of fish such as the brain and muscle, thereby leading to 
an impairment in the metabolism of neurotransmitters 
[111, 116].

Effects of TiO2 NPs on algae and plants

Presently, there are limited information on the 
toxicity of TiO2 NPs to both algae and plants. However, 
Hou and co-researchers have provided a generalized 
illustration to enhance the understanding of the toxic 
effects of TiO2 NPs to algae and plants as shown in 
Fig. 6 [117]. 

Importantly, membrane and DNA damage, and 
cell growth inhibition bioassays remain the major 
parameters in determining the toxicity of TiO2 NPs 

Fig. 6  Schematic illustration of the toxicity of TiO2 NPs to algae and plants. The UV irradiation of the NPs enables the generation of 
ROS and the subsequent damage to the DNA of the algae and plant cells. Reproduced with permission [117].
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to algae [118]. For instance, Wang and co-workers 
attributed the cell wall damage from the entrapment 
of algae to the toxic effect on the algae P. tricornutum 
[118]. This inference was made after the algae were 
exposed to TiO2 NPs at concentrations ≥ 20 mg/L 
for 5 days. They observed that aggregates of the NP 
entrapped the algae cells, thereby causing the algae cell 
wall damage even on the first day of the exposure.

In a recent study, Sendra and co-researchers also 
attributed the cell membrane damage of four coastal 
microalgae (Amphidinium carterae, Chaetoceros 
gracilis, Nannochloropsis gaditana, and Pleurochrysis 
roscoffensis) to their exposure to TiO2 NPs [119]. 
This observation followed a 3-day exposure of the 
microalgae populations to various concentrations of 
TiO2 NPs in sunscreen products. They also observed 
that the differential sensitivity of the microalgae to the 
TiO2 NPs could cause an alteration in the phytoplankton 
dynamics, thereby provoking undesirable ecological 
effects such as the predominance of dinoflaggelates.

As regards  p lan t s ,  Larue  and  co-workers 
investigated the fate of pristine TiO2 NPs and an 
aged paint leachate containing TiO2 NPs on lettuce 
leaves by foliar exposure [105]. They observed that 
the pristine NPs and those from the paint leachate 
were internalized in the lettuce leaves and in all leaf 
tissue types (Fig. 7). They also reported that no acute 
phytotoxicity was observed in the leaves and recorded 
low variations in phytochelatin and glutathione levels 
following the investigation of phytotoxicity markers.

Szymanska et al. also investigated the response 
of a 5-week old plant (A. thaliana) to vitamin E, 
following exposure to TiO2 NPs [120]. They observed 
that an increase in the concentration of the NPs (100-
1000 mg/L) resulted in corresponding increases in 
the biomass and chlorophyll contents of the plant. On 

the contrary, high concentrations of the NPs caused 
root growth and lipid peroxidation. Additionally, 
there was an alteration in the expression levels of 
tocopherol biosynthetic genes as the plant responded 
to the NPs. Recently, Dogaroglu et al. investigated the 
effect of TiO2 NPs on the antioxidant enzymes (SOD, 
CAT, glutathione, proline, and ascorbate peroxidase), 
chlorophyll content, and seed germination of Barley 
after 21 days of planting [121]. They reported that the 
seed germination was not affected by the application of 
the NPs. However, the chlorophyll contents decreased 
in comparison with the control group at TiO2 NPs 
concentration of 20 mg/kg. They also reported that 
the NPs caused an increase in the CAT and proline 
activities and a decrease in the SOD, glutathione, and 
ascorbate peroxidase activities of the Barley plant. 

In higher plants such as Nicotiana tabacum  and 
Allium cepa, the toxic effects of TiO2 NPs have also 
been documented [106]. For instance, DNA damage 
was observed in Nicotiana tabacum, while  lipid 
peroxidation, DNA damage, and growth inhibition 
were observed in Allium cepa after exposure to 
TiO2 NPs. Furthermore, increased level of MDA 
concentration at 4 mM TiO2 NPs was detected in 
Allium cepa, indicating that its DNA damage could 
also be attributed to lipid peroxidation. 
Effects of TiO2 NPs on soil biota

Once released in the environment, TiO2 NPs 
could induce toxicity to non-target organisms in the 
environment, particularly taking the photocatalytic 
activity of these NPs into account [122, 123]. With 
respect to soil organisms, the reported apical (survival 
and reproduction) effects of TiO2 NPs show a broad 
EC50 span ranging both below and above 1000 mg/
kg of TiO2 [7, 124]. Unfortunately, there is no much 
information on the widespread gene-expression 

Fig. 7  Illustration of the phytotoxic effect of TiO2 NPs on the lettuce leaves showing their synchrotron based micro X-ray 
fluorescence map. The NPs from the paint leachate internalized in the leaves and in all types of the leaf tissues. Reproduced with 
permission [105].
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responses in soil organisms, which may have provided 
an explanation to the observed apical toxicity and thus 
enable a better understanding of what actually happens 
following biological exposure to these NPs [7]. 

Although an in vitro study showed no obvious 
toxicological effect of TiO2 NPs on lysosomal function, 
plasma membrane integrity, and cell mitochondrial 
activity [125], these NPs have been reported to induce 
DNA damage [107] and oxidative stress [126] at the 
sub-organismal level.  The recent study by Gomez and 
others [7] on the toxicity of photoactivated TiO2 NPs 
to Enchytraeus crypticus showed that the photoactivity 
of the NPs enhanced their toxic effects. Particularly, 
lysosome damage, negative effect on reproductive 
organs, and activation of oxidative stress transcription 
were observed.

Also, the response of the microbial community 
of soil for agricultural purpose to a 90-day exposure 
to TiO2 NPs was investigated in a study by Simonin 
et al. [14]. In order to ascertain their soil function 
impacts, the researchers monitored the nitrogen cycle 
and also measured the nitrification and denitrification 
activities of enzymes. They further quantified specific 
representative genes including nirS and nirK for 
denitrifiers, and amoA for the ammonia oxidizers. 
Furthermore, an investigation into the diversity shifts 
in archaea, bacteria and their corresponding ammonia-
oxidizing clades was conducted. These researchers 
observed strong negative effects attributed to the 
TiO2 NPs on the abundances of ammonia oxidizers 

and nitrifying enzyme activities. The TiO2 NPs also 
induced a large bacterial community modification 
and cascading negative impacts on the activities of 
denitrification enzymes. Their observations therefore 
suggest for more detailed research into the manner in 
which TiO2 NPs modify soil health and the ecosystem 
function at large.

In summary, notwithstanding the fact that TiO2 
NPs have been extensively applied for advantageous 
environmental cleanup such as in soil remediation and 
water treatment, numerous studies have showcased 
the toxicity of such NPs to aquatic life, soil biota, 
algae and plants. However, few researchers argue that 
TiO2 NPs are not toxic, especially to soil biota. These 
few studies were mainly conducted in vitro, which 
necessitates complementary in vivo studies to establish 
or debunk such safety claims. 

The Mechanism of TiO2-Induced 

Toxicity

Nano-sized TiO2-induced toxicity follows various 
mechanistic pathways such as cellular uptake, 
oxidative stress, neurotoxicity, genotoxicity, and 
immunotoxicity. In the following sub-sections, these 
specific mechanistic pathways will be elaborated 
in detail. Notwithstanding, a generalized potential 
mechanism for TiO2-induced toxicity is summarized in 
Fig. 8.

Fig. 8  The potential of TiO2-induced toxicity mechanism. Triggered by UV irradiation, the TiO2 NPs can reach the cell mitochondrion 
and also cause damage the DNA. Reproduced with permission [117].
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Cellular uptake of TiO2 NPs

Nano-sized TiO2 may cross cell membranes by 
processes including endocytosis, diffusion (adhesion 
interactions), and binding to cellular receptors [15]. 
In an experiment investigating the chemotherapeutic 
effect of TiO2-PEG-DOX NPs on breast cancer 

(MDA-MB-231-GFP-fLuc) cells, Balb/c mice were 
exposed to various amounts of TiO2 for 15 days 
[127]. Irrespective of the fact that an examination of 
the in vivo toxicity of the NPs showed no obvious 
body weight loss or changes in the major organs 
(histological analysis) of the treated mice, Fig. 9 shows 

Fig. 9  Confocal microscopic images for the internalization of TiO2–PEG–DOX NPs in the MDA-MB-231-GFP-fLuc breast cancer 
cells. (a)-(d) Control group. (e)-(h) TiO2–PEG NP treatment of cells. (i)-(l) and (m)-(p) Cells incubated with DOX for 2 and 4 h, 
respectively. (q)-(t) and (u)-(x) Cells incubated with TiO2–PEG–DOX NPs for 2 and 4 h, respectively (scale bar = 50 µm, 40 ×). 
Reproduced with permission [127].

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

GFP Hoechst DOX Merge

Ti
O

2-
PE

G
-D

O
X

-4
 h

Ti
O

2-
PE

G
-D

O
X

-2
 h

D
O

X
-4

 h
D

O
X

-2
 h

Ti
O

2-
PE

G
C

on
tro

l



37Nano Biomed. Eng., 2020, Vol. 12, Iss. 1

http://www.nanobe.org

the cellular internalization of the NPs which could 
be particularly observed in Fig. 9(e)-(h) and (q)-(x), 
thus demonstrating cellular uptake as a mechanistic 
pathway for the toxicity of TiO2 NPs.

In  a  s tudy demonst ra t ing  the  MRI-guided 
photothermal therapeutic efficacy of a black TiO2-
based nanoprobe, cellular uptake of the NPs by 
pancreatic cancer stem cells was examined at 2 and 4 h 
[128]. For this purpose, the nanoprobe (designated as 
bTiO2-Gd-CD133mAb) was prepared by conjugating 
black TiO2 NPs with an MRI contrast agent (DOTA-
Gd) and CD133 monoclonal antibodies (CD133mAbs). 
The ability of the nanoprobe to target CD133 which 
is highly expressed on pancreatic cancer stem cells 
(S, red fluorescence in Fig. 10) was determined 
by synchrotron radiation hard X-ray fluorescence 
microscopy. Although low cytotoxicity of the TiO2 NPs 
was reported in the study, cellular uptake provides a 
mechanistic pathway for potential interaction of cells 
with the NPs which might show toxicity to such cells 
at later dates.

Cellular uptake as a mechanistic pathway for the 
induced toxicity of TiO2 NPs was also observed in 
a study by Sentilkumar and Rajendran [129]. In a 
cellular uptake investigation using MCF-7 and MDA-

MB-231 cells, the researchers observed that the NPs 
significantly altered the morphology of these cells. 
This was complemented by the marked decrease in 
cell viabilities of both cell lines treated with the TiO2 
NPs at Ti concentration of 1.0 µM in comparison with 
the untreated cells as control. Additionally, a similar 
report showed strong Ti signal intensity in a cellular 
uptake investigation of TiO2 NPs by MCF-7 cells [35]. 
The Ti was reported to have accumulated mainly in 
the cytoplasm of the cells, while some amounts of the 
element were visualized around the nucleus of the cells 
by synchrotron X-ray fluorescence microscopy after 2 
h of incubation. These findings further suggest cellular 
uptake as a mechanism for the potential toxicity of 
TiO2 NPs.

Oxidative stress induced by TiO2 NPs

Oxidative stress caused by TiO2 NPs following 
the generation of ROS has been described by some 
researchers as a possible toxicity mechanism for TiO2 
NPs [130, 131]. In this regard, a recent study by Deng 
et al. attributed ROS generation to the physiological 
effects observed in Phaeodactylum tricornutum (P. 
tricornutum) which included changes in soluble sugar, 
chlorophyl a, and malondialdehyde (MDA) contents, 
and  peroxidase (POD) and SOD activities [130].

Fig. 10  X-ray fluorescence microscopic images of CD133 highly expressed pancreatic cancer stem cells incubated with the bTiO2-
Gd and bTiO2-Gd-CD133mAb nanoprobes for 2 and 4 h. Biogenic S element in cells is shown as red-bright color, while Ti and 
Gd elements of nanoprobes are shown as yellow-bright and green-bright colors, respectively. Scale bar = 10 µm. Reproduced with 
permission [128].
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Similarly, Li and co-researchers attributed the 
growth inhibitions and lipid oxidations of Karenia 
brevis (K. brevis) and Skeletonema costatum (S. 
costatum) by TiO2 NPs (average size of 5-10 nm) to 
ROS-mediated oxidative stress [131]. It was observed 
that algae chloroplast was the specific site for the 
ROS generation and accumulation, following the 
addition of inhibitors of various electron transfer 
chains. Additionally, the EC50 values of the TiO2 NPs 
to K. brevis and S. costatum were 10.69 and 7.37 
mg/L, respectively, after 72 h of exposure. Obvious 
effects such as increases in MDA and changes in SOD 
and POD activities also resulted from the TiO2 NPs 
exposure. Furthermore, the light-induced increase in 
toxicity and tocochromanol content in Arabidopsis 
thaliana (A. thaliana) following exposure to TiO2 
NPs (100-1000 mg/L) has been attributed to the 
photoactivation of the NPs and enhancement of ROS 
generation [120]. It was also observed that high 
concentrations of the NPs caused lipid peroxidation. 
Moreover, there were either down- or up-regulation of 
the expression levels of tocopherol biosynthetic genes 
in response to the TiO2 NPs.  

In another study, oxidative stress was also reported 
in newborn pups following the prenatal exposure 
of adult Sprague–Dawley rats to 500 µL (1 µg/µL) 
TiO2 NPs by subcutaneous injection [51]. The NPs 
were injected on gestational days 6, 9, 12, 15, and 18, 
while the pups were examined 2 days after birth. The 
observed toxicity in the pup organs was attributed 
to the oxidative stress induced by the TiO2 NPs. 
Summarily, oxidative stress induced by TiO2 NPs 
has been demonstrated in these reports as a potential 
mechanism for TiO2 NPs toxicity.

Neurotoxicity of TiO2 NPs

Nano-sized TiO2 has been described as having the 
capacity of crossing the blood-brain barrier and as 
such with potential for nuerotoxic effect, as reported 
in a study by Chen et al. [132]. This was illustrated by 
these researchers in the time-dependent accumulation 
of TiO2 NPs in the brain of Zebrafish (Danio rerio), 
following a long-term (6 months) exposure of the fish 
to 7 mg/L of the NPs. This was the first report on the 
neurotoxicity of TiO2 NPs on Zebrafish, after long-
term exposure. Also, the brain of newborn Sprague–
Dawley rat pups were affected by prenatal exposure 
of adult rats to 1 µg/µL (500 µL) TiO2 NPs at different 
gestational days [51]. The brain tissues of male pups 
were examined on postnatal day 2. It was observed that 

the NPs crossed the blood-brain barrier and induced 
damages to the lipids and nucleic acids of the pup 
brains.

In a recent investigation, the short-term co-exposure 
(21 days) of Zebrafish to 100 µg/L TiO2 NPs and 
bisphenol A (2-200 µg/L) was conducted to ascertain 
the neurotoxicity of the TiO2 NPs in conjuction 
with another compound. The TiO2 NPs sorbed the 
bisphenol A and the resulting NPs were reported to 
have also crossed the blood-brain barrier [116]. This 
was explained by the accumulation of about 120-
150 µg/g of the NPs in the Zebrafish brain. The study 
therefore highlighted that the observed neurotoxicity 
was synergistically contributed by both components of 
the NPs. Additionally, TiO2 NPs were reported to have 
crossed the blood-brain barrier and accumulated in the 
brain of a Neotropical detritivorous fish (Prochilodus 
lineatus) and posed neurotoxic effects [15]. This 
was inferred following the decrease in the enzyme 
acetylchlorinesterase activity after an acute exposure (2 
days) of 1-50 mg/L TiO2 NPs.

Another recent study also reported the neurotoxic 
effect of TiO2 NPs in a dose-dependent manner [133]. 
The study evaluated the accumulation of the NPs in 
mice brain after intraperitoneal administration. The 
histological changes in the mice brain with the control 
group (Fig. 11(a)) and TiO2 NPs groups (Fig. 11(b)-
(d)) show the cracked and ruptured nerve cells (Fig. 
11(c)) and the infiltration of the inflammatory cells in 
the mice brain (Fig. 11(d)), after treatment with 100 
and 150 mg/kg body weight TiO2 NPs, respectively. 
Moreover, the activities of some enzymes such as the 
inducible nitric oxide synthases, acetylchlorinesterase, 
and constitutive nitric oxide synthases, and the levels 
of glutamic acid and nitrous oxide in the mice brain 
were altered after the exposure to the NPs. These 
findings suggest neurotoxicity as a potential toxicity 
mechanism for TiO2 NPs.

Genotoxicity of TiO2 NPs

In order to evaluate the in vivo genotoxicity of TiO2 
NPs, parenteral administration was reported to be 
capable of achieving sufficient systemic exposure of 
the NPs after oral uptake, due to the low absorption 
of TiO2 particles [86]. In a different study, the 
genotoxicity of anatase TiO2 NPs was investigated 
by assessing the micronuclei in reticulocytes and 
the mutation frequency in the Pig-A gene in fringe 
blood cells [134]. For this purpose, 0.5-50 mg/kg 
body weight of the NPs (average size of 10 nm) were 
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intravenously injected into B6C3F1 male mice for 3 
consecutive days. It was observed that even though the 
NPs induced cytotoxicity in the mice bone marrow, 
they did not cause obvious direct genotoxicity. 

Furthermore, Dobrzynska and co-researchers 
exposed Wistar rats to a single dose of 5 mg/kg body 
weight anatase/rutile TiO2 NPs (average size of 21 
nm) by intravenous injection [135]. No obvious 
genotoxicity was detected in the red and white blood 
cells of the bone marrow after 24 h, and 1 and 4 weeks 
exposure of the rats to the NPs. However, about a 3-fold 
increase in the micronucleated cells was observed after 
1 h of exposure, following polychromatic srythrocytes 
staining with May-Grunwald-Giesma reagents.

On the contrary, male mice were exposed to 500-
2000 mg/kg body weight of anatase/rutile TiO2 
NPs (average size of 45 nm) by interperitoneal 
administration for 5 consecutive days [136]. The 
potential genotoxicity induced by the NPs was assessed 
by monitoring the appearance of breaks in DNA 
strands when the bone marrow, liver and brain cells 
were subjected to the comet assay, and counting the 
micronuclei frequency in bone marrow polychromated 
erythrocytes. A statistically significant dose-dependent 
increase in DNA strand breaks and micronuclei 

frequency was observed after 24 days of the last TiO2 
NPs exposure. In another study, Driscoll and others 
reported an increase in the mutation frequency of 
hypoxanthine phosphoribosyltransferase (HPRT) in 
alveolar type II cells after 15 months of rat exposure to 
100 mg/kg body weight of anatase TiO2 NPs (average 
size of 18 nm) [137].

Additionally, Ghosh and co-researchers reported 
that TiO2 NPs could cause genotoxic effects when they 
carried out a comparative cytotoxicity and genotoxicity 
study between TiO2 NPs and bulk TiO2 [106]. They 
observed that the TiO2 NPs induced genotoxicity 
at a dose of 0.25 mM, while the bulk TiO2 induced 
genotoxicity at concentrations of 1.25 mM and above 
to human lymphocytes. 

Recently, Gomez and co-researchers reported that 
mice exposure to 1 mg/L TiO2 NPs affected gene 
transcription and translation [7]. They utilized three 
different TiO2 NPs (denoted as NM103, NM104, and 
NM105), which varied in their surface modifications, 
and assessed their toxicities against bulk TiO2. 
Whereas NM105 was not surface modified, both 
NM103 and NM104 were coated with a thin shell of 
Al2O3 and separately treated with dimethicone (to 
enhance hydrophobicity) and glycerin (to enhance 

Fig. 11  Pathological changes in mice brain tissue exposed to TiO2 NPs. The mice were treated with the TiO2 NPs or saline solution 
once a day for 14 days, through intraperitoneal injection. (a) Control; (b) 50, (c) 100, and (d) 150 mg/kg body weight of the NPs. 
The TiO2 NPs caused the cracking and rupturing of nerve cells and the inflammation of brain cells of the mice. Reproduced with 
permission [133].
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hydrophilicity), respectively. They observed that the 
NPs induced gene alterations as there were more 
differentially expressed genes (DEGs) in the NPs than 
in the bulk TiO2, even without UV irradiation (Fig. 12). 

Furthermore, another recent investigation on 
the effect of high-dose TiO2 NPs revealed both 
developmental and genetic toxicity of the NPs to 
mice embryo [133]. Moreover, the study also reported 
disorders in the expression of protective genes in the 
mice liver after interperitoneal administration of the 
NPs.  

I n  ano the r  s t udy,  membrane  damage  and 
genotoxicity caused by TiO2 NPs was reported in 
four coastal marine microalgae namely: Amphidinium 
carterae  (Dinophyceae), Chaetoceros gracilis 
(Bacillariophyceae), Nannochloropsis gaditana 
(Eustigmatophyceae), and Pleurochrysis roscoffensis 
(Primnesiophycae) [119]. The study was conducted 
by exposing the microalgae populations to three 
commercial sunscreen products (with variable 
TiO2 concentrations) for 3 days in the presence of 
UV radiation. Taking cognizance of other organic 
compounds in the sunscreens which may also affect 
the toxic effects of the products, the genotoxicity 
was mainly attributed to the UV-activated TiO2 NPs 
components of the sunscreens. 

In summary, these findings generally indicate that 

the possibility for TiO2 NPs to induce genotoxic effects 
to various organisms cannot be overruled at high NP 
doses. 

Immunotoxicity of TiO2 NPs

Nano-sized TiO2 has recently been reported as 
potentially immunotoxic to a fish (Prochilodus 
lineatus) as it altered the immune system and increased 
the energy expenditure, thereby reducing the ability 
of the fish to avoid predators and fight pathogens [15].  
In the study, a subchronic exposure (14 days) of the 
fish to 1-50 mg/L TiO2 NPs caused a decrease in red 
blood cells, white blood cells, and lymphocytes, and 
an increase in the mean cell volume and hemoglobin. 
In another study, increased tissue burdens of TiO2-
bisphenol A NPs have been observed after a short-
term exposure of male and female Zebrafish to 
these NPs [116]. The study reported that the plasma 
concentrations of testosterone, estradiol, and follicle-
stimulating hormone decreased after the 21-day co-
exposure of male Zebrafish to the NPs. For the female 
zebrafish, the co-exposure was reported to have 
caused decreases in the concentrations of the follicle-
stimulating hormone and luteinizing hormone.

The local immune function of rats exposed to 0.5-
50 mg/kg body weight of TiO2 NPs (average size of 
5 nm) by intratracheal instillation was reported in a 

Fig. 12  (a) Number of DEGs (control/treatment ratios), and (b) Venn diagram representation of the DEGs affected by exposure to 1 
mg/L of the TiO2 materials: bulk, NM103, NM104, and NM105, without or with UV irradiation in ISO water for 5 days. Down/up 
represents down- or up-regulated transcripts. The NPs induced gene alterations evidenced by the number of more DEGs in the NPs 
than in the bulk TiO2. Reproduced with permission [7].
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study by Liu et al. [138]. High-dose exposure of the 
rats to the NPs caused a decrease in the phagocytic 
ability of the pulmonary alveolar macrophages, while 
low-dose exposure increased this ability. Also, the 
NPs decreased chemotactic ability and increased the 
secretion of tumor necrosis factor-alpha (TNF-α) 
of the macrophages, thus suggesting that the NPs 
could disrupt macrophage functions associated with 
pulmonary specific and non-specific immunities. 

Nano-sized TiO2 was also detected in the immune 
cells of rats which were orally exposed to the NPs for 
one week at human relevant levels [139]. Particularly, 
the Peyer’s patches of the rat immune cells showed 
increased frequency of dendritic cells, while a decrease 
in regulatory T cells which are involved in reducing 
inflammatory responses were observed following the 
oral exposure. Furthermore, a decrease in the secretion 
of Thelper (Th)-1 IFN-γ and a sharp increase in splenic 
Th1/Th17 inflammatory responses were observed 
following the stimulation of the immune cells isolated 
from the Peyer’s patches of the rats.

Systemic immune effects have also been observed 
after the exposure of Sprague-Dawley rats to TiO2 
NPs [140]. The rats were exposed twice a week for 
three consecutive weeks to the NPs at doses ranging 
from 0.5-32 mg/kg body weight. The histopathological 
immune organs obtained from the exposed rats 
showed slight spleen congestion and brown particulate 
depositions in the axillary and cervical lymph nodes. 
Additionally, the immune function response of the 
rats was characterized by an increase in the T and B 
cells proliferation following mitogen stimulation. An 
enhancement in the cell killing activity of the spleen, 
coupled with an increase in the number of B cells in 
the blood was also observed in the exposed rats.  Taken 
together, available literature reveal that immonotoxicity 
is potential mechanism for the toxicity of TiO2 NPs. 

Conclusions and Future Per- 

spectives

Since the early discovery of ultraviolet radiation-
mediated water splitting on the surface of TiO2, 
research on the diverse applications of TiO2 NPs has 
been on the rise. Complementarily, the FDA approval 
of TiO2 as a food additive has increased the worldwide 
production and consequent availability of TiO2 and 
its NPs for various research purposes. Presently, TiO2 
NPs have numerous gainful applications due to their 

exceptional properties, but the toxicity of these NPs 
to date is not fully understood, which is common for 
most other NPs. Interestingly, some researchers argue 
that TiO2 NPs present obvious toxicity to cells, major 
animal organs, and the environment at large, while 
some researchers argue otherwise. 

Never theless ,  i t  has  been es tabl ished that 
intravenous, intraperitoneal, subcutaneous, and intra-
articular injections, prenatal, dermal, body implants, 
oral, inhalation, intratracheal instillation, abdominal/
intra-abdominal, and intragastric administration 
account for the numerous exposure routes of animals 
to TiO2 NPs. Apart from animals, other organisms 
such as soil biota and aquatic species, and various 
plant species have been negatively affected by TiO2 
NPs. Additionally, various mechanisms have been put 
forward to describe the toxicity of TiO2 NPs. These 
include oxidative stress, cellular uptake, neurotoxicity, 
genotoxicity, and immunotoxicity. 

There are numerous ways in which the toxicity 
of TiO2 NPs can be ameliorated. We observed that 
some researchers reported a dose-dependent toxicity 
of TiO2 NPs and we therefore opine that adequate 
functionalization of these NPs can extensively 
enhance their efficacies and reduce the need for 
excessive administration of the NPs to animals 
or their use in various environmental aspects. In 
medical implants for instance, it is necessary to 
develop highly crystalline TiO2 NPs with improved 
stability in order to reduce the toxic effects of the 
NPs. Furthermore, proper encapsulation of these 
NPs into other nanomaterial carriers to form slow 
release systems for the photodegradation of organic 
pollutants can effectively mitigate their environmental 
toxicities by taking advantage of the benefits of the 
slow release technology. This encapsulation strategy 
can also be extended to the application of TiO2 
NPs for photothermal and photodynamic cancer 
therapies, wherein the nanocarriers can release the 
NPs at the tumor microenvironment. We therefore 
envisage that this work, which showcases the recent 
toxicity assessments of TiO2 NPs will also serve as 
a useful baseline information for an adequate future 
conventional classification of TiO2 NPs toxicity. 
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