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Application of Molecular Dynamics in Coating Ag-
Conjugated Nanoparticles with Potential Therapeutic 
Applications

Abstract
                         

Drug delivery systems may benefit from nanoparticles synthesized using biological methods. While 
chemical reduction of particles is facilitated by some active compounds present in the bio-extract, 
other active compounds, with potential therapeutic activities, may be adsorbed onto the surface of 
nanoparticles. However, the mechanism of bio-based nanoparticle synthesis is still under debate. 
Here, we first employed a molecular dynamics (MD) approach to theoretically predict the coating 
of a hypothetical 4.5 nm silver nanoparticle with four selected rosemary (Rosmarinus Officinalis L.) 
active compounds (rosmanol, isorosmanol, carnosol, and carnosic acid). Analysis of density maps 
and radial distribution functions (RDF) values suggested that the examined compounds had strong 
hydrophobic properties and could instantaneously be adsorbed to the nanoparticle surfaces. Next, we 
experimentally examined the capacity of rosemary leaf extract to synthesize and coat Ag-conjugated 
nanoparticles. The data obtained from ultraviolet–visible spectroscopy, transmission electron 
microscopy, Fourier-transform infrared spectroscopy and X-ray powder diffraction analyses confirmed 
the production of spherical Ag-conjugated nanoparticles with an average size of 12-15 nm, coated 
with proteins, secondary metabolites and other active compounds. Since this method can predict the 
dynamic behavior of therapeutic compounds when they are in contact with nanoparticles, we believe 
it provides a valid and new avenue to designing new therapeutic nanoparticles.
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Introduction

Drug del ivery has  long been a  concern in  
pharmacology. Nanoparticles, with various shapes 
and sizes, have been proved suitable candidates for 
delivering hydrophobic drugs and biologics through 
biological barriers [1-3]. Synthesis of nanoparticles  

(NPs) using biological methods is considered to be 
safer, nontoxic, eco-friendly, and more affordable, 
as compared to physical or chemical methods [4-7]. 
Generally, in bio-based methods, natural compounds 
or extracts obtained from living organisms including 
bacteria, fungi and plants, containing chemical 
reducing activities, are employed in the synthesis 
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of various NPs with different properties [8, 9]. 
Interestingly, during this biosynthesis reaction, several 
natural compounds present in the bio-extract can be 
readily attached onto the surface of those synthesized 
NPs. Subsequently, by changing solvent properties, 
such as pH, those compounds could be released from 
the surface of the NP. This phenomenon provides 
grounds for some interesting applications, including 
new means for isolation and purification of rare natural 
products, as well as new venues for drug delivery, 
using metallic NPs of choice, coated with selective 
therapeutic compounds. 

Several plant secondary metabolites, including 
phenolic compounds and alkaloids are thought to 
be able to act as an electron donor to metallic ions, 
converting them to neutral NPs [10-12]. Rosemary 
(Rosmarinus officinalis) is a well-known evergreen 
member of the Lamiaceae family, which contains 
several secondary metabolites with strong anti-
platelet [13], antioxidant [14, 15], anti-inflammatory 
[16, 17], anti-diabetic [18], anticarcinogenic [16, 19], 
antibacterial, and antifungal activities [20, 21]. Among 
the various secondary metabolites present in rosemary 
leaf extract [22], carnosic acid, carnosol, rosmanol and 
isorosmanol are important diterpenes with potential 
valuable therapeutic applications [23, 24]; however, 
their properties and behavior in regard to attachment 
onto the surface of NPs have not yet been investigated.

Molecular dynamics (MD) simulation is a widely 
used tool in computational biology, with great 
capabilities in revealing the underlying mechanisms 
of biological processes such as chemical and dynamic 
properties of biological macromolecules as well as their 
interactions with each other and their surroundings [25]. 
Here, for the first time, a molecular dynamics (MD) 
approach has been exploited to analyze and model the 
molecular behavior of four hydrophobic compounds 
present in rosemary leaf extract, in Ag-conjugated 
NP biosynthesis. Subsequently, the proposed model 
was evaluated by experimental biosynthesis and 
characterization of NPs coated with rosemary active 
compounds.

Experimental
Molecular dynamics simulation 

In order to perform the molecular dynamics 
simulations, a 4.5 nm quasi-spherical silver NP, 
containing 3781 Ag atoms, kindly provided by 
Kyrychenko et al. [26], was placed in the center of a 

cubic box with a minimum distance of 1.5 nm from 
each side.

Using this box, in total, five various systems were 
prepared and simulated, in four of which, 20 molecules 
of each active compound were inserted individually. 
In the fifth system, four active compounds were 
inserted altogether at a quarter (5 molecules each) of 
the concentration used in their individual systems. 
The molecules were inserted into the box at random 
positions with a concentration of approximately 57 
mM. 

A l l  M D  s i m u l a t i o n s  w e r e  p e r f o r m e d  b y 
GROMACS 5.1.2 software [27] using gromos53a6 
force field [28] and SPC water mode [29], under 
periodic boundary conditions (PBCs). The whole 
complex was solvated by TIP3P water molecules. The 
systems were energy-minimized, using the steepest 
descent minimization algorithm for all atoms [30]. 
Each system was equilibrated in both NVT ensemble 
(constant number of particles (N), volume (V), and 
temperature (T)) coupled to the V-rescale thermal 
bath at 300 K over 100 ps and in the NPT ensemble 
(constant number of particles (N), pressure (P), and 
temperature (T)) coupled to the Berendsen pressure 
bath at 1 atm over 300 ps. Each system was then 
subjected to a 30 ns molecular dynamics (MD) 
simulation under constant conditions of 1 atm and 
300 K with a time step of 2 fs. 

Bond lengths constrained using the LINCS 
algorithm [31] and the long-range electrostatics were 
applied using the particle mesh Ewald (PME) [32], 
while the SETTLE algorithm [33] was employed 
to constrain the geometry of water molecules. The 
trajectory information was analyzed using GROMACS 
utilities and VMD programs [34]. Moreover, UCSF 
chimera was used for visualization, inspection and 
preparation of the NP and compounds [35]. The force 
field parameters of the compounds were obtained from 
the ATB web server for gromos53a6 force field and the 
Lennard Jones parameters and the partial charge of Ag 
atoms were obtained from already published data [26, 
36, 37].

Although the actual partial charge of individual 
atoms in an Ag-conjugated NP molecule can 
dynamically vary between -0.07 and +0.07 [38], the 
net charge of the entire molecule is zero. To minimize 
the computing power needed for quantum mechanics 
calculations to an affordable value, the net- and partial-
charges of the NPs were set to zero.
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Biosynthesis and characterization of silver 
nanoparticles

The leaves of Rosmarinus Officinalis L. were 
collected from Golestan University campus, Gorgan, 
Iran (54°25′E; 36°50′N) during 2012-2013. Samples 
were washed and air dried at 60 °C for 48 h and ground 
to a fine powder using an ordinary coffee grinder. 
One gram of each sample was used for extraction 
in 50 mL of ethanol for 48 h at room temperature. 
Afterwards, solutions were filtered through Whatman 
No. 3 paper and concentrated by a rotary evaporator 
at <40 °C. Silver-conjugated NPs were synthesized, 
as basically described by Hadi et al. [39]. 1% (V/V) 
of the plant extract and 1 mM of AgNO3 (Sigma-
Aldrich, Germany) were mixed and retained at room 
temperature for 0, 45, 90, 150, 210 or 300 min. The 
solutions were then centrifuged at 20,000 g for 15 min 
and the resulting pellet was washed twice with distilled 
water and were left at room temperature for 16 h to 
dry before further characterizations. The progress of 
NP biosynthesis was monitored by measuring changes 
in the solution color, using an ultraviolet–visible 
spectrophotometer (Shimadzu UV-1800, japan) in the 
range of 200 to 800 nm. 

The crystallite structure of the particles was 
determined through recording their elemental spectra 
by an X-ray diffractometer (D8-Advance, Bruker, 
Germany) equipped with a CuKα radiation source (λ 
= 1.54 Å) in the range of 20° to 80° at a 0.5 degree/s 
scan rate. The average crystallite size of the NPs was 
estimated by Sherrer’s formula (D = 0.9λ/β Cosθ), 
where λ stands for the X-ray wavelength, β for the 
full width at half-maximum and θ for the diffraction 
angle. The data were analyzed with XPowder software 
package. A Philips CM120 transmission electron 
microscope was employed to determine the size and 
shape of the synthesized NPs, as previously explained 
[39]. FTIR (Fourier-transform infrared spectroscopy) 
was performed using a Spectrum RXI (PerkinElmer, 
USA) in the range of 4000–400 cm-1 at a resolution of 
4 cm-1, as described previously (40).The shape and size 
of the synthesized NPs were examined by a Philips 
CM120 transmission electron microscope at 120 kV 
with a 2.5 Angstrom resolution, as described by the 
supplier, as described previously [11].

Results and Discussion 
Molecular dynamics simulation

The stability of the Ag-conjugated NPs was 

measured using the radius of gyration [41, 42], and 
is shown in Fig. 1. The radius of Ag NPs was slightly 
fluctuating while the Ag atoms vibrated in their 
positions during simulations. The stability of all NPs 
was declared by this method.

The atomic motion and behavior of the compounds 
and their interactions with each other were studied 
by watching simulations’ trajectories [43-46]. Our 
analyses showed that each of the active compounds 
in question was instantaneously attached to the NP 
(Fig. 2 and Supplementary movie 1). As shown in Fig. 
2, all twenty molecules of each compound present in 
the box could be attached to the surface of the NP, 
either directly or indirectly, suggesting that increasing 
the concentration of the molecules present in the box 
resulted in the attachment of all compounds onto the 
NP until the entire surface was occupied.

The above-mentioned rosemary’s four active 

Fig. 1  The radius of gyration of Ag nanoparticle in one of the 
simulation systems.
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Fig. 2  The surface view of the Ag-conjugated nanoparticle 
after 30 ns of MD simulation. All of the 20 molecules could be 
absorbed on the surface of the nanoparticle.
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compounds (isorosmanol, carnosol rosmanol and 
carnosic Acid) have hydrophobic properties; i.e. they 
try to escape from interaction with the polar water 
molecules. This may explain why they immediately 
attached onto the NP surface or other compounds 
present in the solution (Supplementary movies 2 and 3). 
These four compounds were very similar in structure, 
and while all had functional hydroxyl and carbonyl 
groups, the three hydrophobic rings present in their 
structures dominantly made the compound’s molecular 
behavior similar to a hydrophobic molecule, which 
resulted in the immediate interactions of rosemary’s 
active compounds with each other and NPs.

In order to analyze the movements of active 
compounds relative to the target NP, the density map 
of ligands during the simulation process was calculated 
by utilizing the Gromacs densmap program. Gromacs 
densmap produced a 2D density plot of a selected 
group across the box (Fig. 3), which shows the 
presence-time of a chosen group in a specific location 
using color intensity (i.e. darker regions are indicative 
of longer presence). For clarity, we manually and 
schematically placed the Ag-conjugated NP on the 

density map. All four active compounds were attracted 
to the Ag NP, and maintained their positions during the 
simulation period (Fig. 3).

In addition, radial distribution functions (RDFs) 
were used to analyze the tendency of the active 
compounds to attach onto the Ag-conjugated NP 
surface. As shown in Fig. 4, the active compounds had 
the highest distribution density at 1 nm distance from 
the NP, which confirmed the attachment of all present 
onto the surface of Ag NP [47, 48].

In order to learn about possible key interactions 
influencing the attraction of active compounds to 
the NP surface, five separate MD simulations were 
performed. The results of these experiments showed 
that when the active compounds were approaching 
the NP, and their orientations were only affected by 
their initial orientation, while most of the molecules 
interacted with their  hydrophobic r ings [49] 
(Supplementary movies 4 and 5).

In MD simulations, assigning the accurate atomic 
partial charge of each atom is a key step to correctly 
modelling a molecular system behavior. Several 

Fig. 3  Density maps of the four active compounds throughout the 30 ns simulation: (a) Isorosmanol, (b) carnosol, (c) rosmanol, and (d) 
carnosic acid.
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methods have recently been developed to calculate 
the atomic partial charges of a molecule,however, 
none are adequately qualified for large molecules 
or complex structures like NPs. Solving quantum 
mechanics equations even for a single Ag atom needs 
ample computer resources. Considering that an Ag-
conjugated NP contains thousands of atoms, it is 
almost impossible to accurately calculate its partial 
charges even by advanced computers [50]. Therefore, 
we set the atomic partial charges of NP to zero, which 
provides an approximate model of Ag NP in hand [51, 
52].

Experimental synthesis of silver nanoparticles

Chemical reduction of Ag+ to Ag-NPs during 
exposure to 1% ethanolic extract of Rosmarinus 
officinalis L. characterized by the color change of 
solution from yellow to dark brown after addition of 
AgNO3 is presented in Fig. 5. The color changes are 
basically caused by a quantum phenomenon that occurs 
in metallic NPs called excitation of surface plasmon 
resonance [53, 54]. 

The exact mechanism of biological reduction of Ag+ 
to Ag is not completely understood. The reduction of 

Fig. 4  The radial distribution function of the four active compounds during 30 ns simulation.
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Fig. 5  The ultraviolet-visible spectra of Ag-NPs synthesized by the reduction of silver ions using rosemary leaf extract. The color 
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Ag+ can happen via reducing agents present in plant 
extracts such as proteins, secondary metabolites and 
biologically active compounds, which can also coat 
the Ag-conjugated NPs and prevent their aggregation. 
Recently, synthesized stable monodisperse Ag-protein 
(core–shell) NPs showed an effective antimicrobial 
potency against  two representat ive bacter ia ,  
Staphylococcus aureus and Klebsiella pneumonia. 
Proteins bind to the NPs either through their free 
amine groups or cysteine residues [55, 56]. As it was 
demonstrated in MD simulation, active compounds 
and secondary metabolites, can bind to the NPs too. 
The transmission electron microscopy (TEM) images 
showed that the size of the synthesized NPs varied 

between 3 to 30 nm in diameter, with an average size 
of 12-15 nm and a spherical shape (Fig. 6).

Fourier-transform infrared spectroscopy 

Fourier-transform infrared spectroscopy (FTIR) of 
the biosynthesized Ag-conjugated NPs by rosemary 
leaf extract suggested that several active compounds 
present in the extract were attached onto the surface 
of the synthesized NPs (Fig. 7(a) and Table 1). In the 
FTIR spectrum, several strong, broad, sharp and weak 
peaks were observed. The broad and strong peak at 
3433 cm-1 represented O-H bond stretching in alcohols 
and phenols which corresponded to the O-H and 
phenol groups in the rosemary’s active compounds. 

Table 1  The details of the frequencies and the corresponding bonds

Absorption (cm-1) Group Compound class Appearance

3433 O-H stretching alcohol, phenol strong, broad

2340 O=C=O stretching carbon dioxide strong, sharp

1610 C=C stretching cyclic alkene medium

1433 O-H bending carboxylic acid medium

Fig. 7  (a) The Fourier-transform infrared spectrum of synthesized Ag/AgCl–NPs. (b) X-ray powder diffraction pattern of Ag/AgCl 
NPs which represented the presence of both Ag and AgCl atoms in the solution.
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The 2340 cm-1 strong and sharp peak might probably 
be related to CO2 contamination. The sharp and weak 
peak at 1610 cm-1 might be related to the C-H bond in 
the aromatic stretching, associated with the phenolic 
ring structures or it could be related to aromatic rings 
which might be indicative of the aromatic amino 
acids of various proteins, or the aromatic rings of the 
rosemary’s diterpenes. The FTIR spectra also indicated 
the non-bonded chemical interactions between 
rosemary leaf extracts and Ag-conjugated NPs. 

These observations suggest that several rosemary’s 
metabolites may act as bio-reductants and/or 
bio-stabilizers. Moreover, the NPs coated with 
these metabolites may exhibit unique therapeutic 
properties. 

X-ray powder diffraction analysis

In order to understand the nature and composition 
of the synthesized Ag-conjugated NPs, X-ray powder 
diffraction (XRD) analysis was performed, which is 
indicative of the presence of different atoms in the 
solution based on the observed peak patterns (Fig. 
7(b)). The (111), (200), (220), (222) and (311) peaks 
represented the AgCl molecules in the solution and 
the (111) and (200) peaks represented Ag atoms [57], 
suggesting that in addition to Ag-NPs, AgCl-NPs 
were present in the solution (Fig. 7(b)). Similar results 
were reported when other bio-based NP biosynthesis 
methods were employed [57, 58]. 

Conclusions

Recently, NPs have immensely influenced human 
lives, especially considering their applications in drug 
delivery. Data obtained from molecular dynamics 
simulation of the coating process of Ag-conjugated 
NP by rosemary’s active compounds, revealed that 
rosmanol, isorosmanol, carnosol, and carnosic acid 
were able to successfully attach to the surface of the 
synthesized NPs, probably due to their hydrophobic 
properties. The in-silico biosynthesis modelling was 
confirmed by experimental data, and indicated that the 
synthesized NPs consisted of Ag/AgCl with a spherical 
shape and an average size of 12-15 nm, coated with 
several bioactive compounds of rosemary leaf extract. 
Therefore, a new idea is presented for taking advantage 
of plants’ abundancy for biosynthesis of NPs coated 
with desired active compounds, with promising 
beneficial applications in future drug discovery 
approaches.  
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