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Abstract
                         

The increasing agricultural, industrial and domestic activities have led to an alarming increase of 
organic and inorganic pollutants in the aquatic systems. These pollutants can harm the environment 
and the living beings; thus the ecological and environmental momentousness of keeping the water 
resources contamination free has become a sensational concern for researchers. There was an 
immediate need to develop a methodology for complete removal of contaminants from water resources 
for sustainable co-existence of all creatures. Conventional water treatment processes like adsorption, 
coagulation, etc. have high operational costs and produce secondary pollutants. Other traditional 
methods have proven to be limited techniques due to fast charge recombination, less visible light 
usage, etc. This led to the emergence of photocatalysis as a propitious environment friendly process 
for water purification. The employment of semiconductor catalysts in photocatalysis has proven to be 
potent in degradation of variety of organic impurities to minimally hazardous substances. This paper 
reviews the potential of cadmium sulphide-based photocatalysts for organic dye degradation and its 
superiority over other heavily exploited photocatalysts. The complete mechanism of photocatalysis 
and the degradation of pollutant have been discussed.

Keywords: Photocatalysis, Water purification, CdS-based nanocomposites, Mechanism, Organic 
pollutant, Reactors

Introduction

Water resources are in need of regular quality 
checks in order to make them fit on sustainable basis 
[1]. Henceforth quality along with the quantity of 
water decides its availability [2]. During the last two 
decades, some of the major reasons that have become 
a sole reason behind the rise in the amount of organic 
impurities in water resources are population growth, 
rapid industrialisation and continued advancements in 
technologies [3]. The water pollutants are classified 
into three major categories; physical (smell, colour, 
etc), chemical (inorganic/organic compounds), and 
biological (pathogens) [4]. The release of toxic organic 
pollutants into water resources is directly proportional 
to the extent of industrial growth, not to mention the 
harm and hazard they pose to the environment [5]. 
The complicated amalgam of biological along with 
chemical constituencies depicting varied ecological 
effects, based on the origin of the pollutant are called 
industrial effluents, for example, food, pharmaceutical, 
textile, etc [6]. Many  times, water treatment processes 
may lead to the formation of carcinogenic or mutagenic 
disinfection by-products (DBPs), for example halo-
acetic acids (HAAs), as a result of reactions occurring 
between natural organic matter and disinfectants such 
as chlorine or chloramines [7]. Organic impurities 
need more attention in comparison to the others 
as they have prevalent carcinogenic impacts, even 
upon being exposed to minimal amounts [8, 9]. The 
organic dyes are usually distinguished depending on 
their chromophore group [10]. Air transportation via 
vapours and water transportation via dust particles 

and sediments from source to a new environment 
has also been reported in organic pollutants, thus 
making them even more threatening [11]. Although 
few biotic impurities adulterate both surface and 
groundwater. Groundwater adulteration has been 
the key link between humans and these hazardous 
substances [12]. High-molecular-weight organic 
pollutants are considered to be the typical refractory 
pollutants, the presence of which creates issues in 
the water-treatment machinery [13]. The degradation 
of refractory pollutants is challenging because 
of the inefficiency in the present water-treatment 
machineries in treating the former [14], as they have 
become immune to the decomposition of microbes 
in the presence of air in traditional biotic purification 
methods [15]. Major issues regarding the synthetic 
dyes are their adverse effects in the environment. They 
inhibit aquatic photosynthesis, deplete dissolved O2 
and are extremely toxic to the flora, fauna and human 
beings. For example, the generated aromatic amines 
due to the anaerobic degradation of synthetic dyes such 
as azo dyes have  found to be carcinogenic [16]. The 
photocatalytic degradation (PCD) process has emerged 
as an advantageous alternative in the field of small 
amounts of refractory pollutants containing wastewater 
treatment [17, 18]. The complete mineralisation of 
wastewater at a low cost makes PCD superior to other 
processes [19]. An efficient photo-catalyst must be 
responsive to light, should be able to make use of 
visible or near ultraviolet light, unreactive (biologically 
and chemically), stable under illumination, not prone 
to photo-corrosion, inexpensive and non-toxic [19]. 
Semiconductor materials have been alluring scientists 
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because of their possession of novel characteristics 
and potential applications [20, 21]. Various studies 
have established that semiconductor photocatalysts 
in their nano range are more beneficial than their 
bulk counterparts [22]. The reduction of the size of 
a material to nanoscale gives rise to new chemical 
and physical properties [2]. The surface energy per 
particle significantly rises in the nano range [23]. This 
increase in surface energy speeds up the extraction of 
pollutants at even minute amounts of nano-catalysts 
[24]. As a result of requirement of a lower amount of 
nano-material in comparison to its bulk counterparts, 
lesser waste generation takes place by the use of nano-
catalysts, specifically in posttreatment [25]. TiO2 
and ZnO have been amongst the heavily exploited 
photocatalysts in pollutant degradation, their stability, 
high photosensitivity, wide band gap being some of 
the reasons among the others [26-29]. Usually in the 
case of wide band gap photocatalytic materials, like 
TiO2, they tend to only absorb UV light. For example, 
TiO2 possesses a 3.2 eV wide band gap and absorb 
ultraviolet radiations only with wavelength less than 
387 nano metres, resembling nearly three to five 
percent of the entire solar energy. This leads to certain 
limitations to the photocatalytic potency of TiO2 [30-
32]. On the other hand, small band gap materials are 
known to absorb large part of visible light [33]. As 
already known, metal sulphides possess a convenient 
conduction band location and relatively small band 
gap, which in case of cadmium sulphide is 2.4 eV, thus 
making it a suitable choice as a photocatalyst [34]. 
CdS, as a vital II–VI semiconductor possessing a 2.40 
eV wide band gap and 2.4 nm2 Bohr radius has been 
deployed as a photocatalyst [35-37]. The existence of 
discreet band structure in the semiconductor domain 
is a result of quantum confinement, leading to the 
production of excitons upon illuminating with light 
[38]. The metallic nanostructures show the surface 
plasmon resonance (SPR) that regulate the  absorption 
and scattering properties [39]. The interaction of 
the photo-induced excitons and plasmons occurs 
metal-semiconductor interphase. This results in 
flow of energy across their junctions, henceforth 
promoting charge transfer and charge separation 
[40]. The electrons and holes generated due to the 
photoexcitation in CdS show high recombination rates 
as a result of their narrow band gap. This along with 
the low photostability and high toxicity of CdS limits 
its photocatalytic efficiency [41-43]. However the 
usage of befitting electron acceptors such as metals 

[44], carbon derivatives [45], and other semiconductors 
having suitable band structures [46, 47] can help in 
lowering the recombination rate of charge carriers in 
semiconductors. 

This review article discusses current advances 
in the various CdS based nanocomposites used for 
photocatalytic degradation of organic pollutants. 
Homogeneous and heterogeneous are the two pathways 
of photocatalytic degradation of organic pollutant. 
The mechanism involved in both these photocatalysis 
as well as that of the degradation of dye has been 
schematically discussed in detail. Photocatalytic 
reactors and their role in photocatalysis have also been 
highlighted.

Nanomaterials

A well famous lecture in 1959 by Nobel prize 
winner, Richard P. Feynman on  “nanotechnology” 
quoted, ‘‘There’s Plenty of Room at the Bottom” [48]. 
Since then, uncountable ground breaking progresses 
were made in the nano-technology arena. According to 
ISO/TS 80004, nanomaterial is “material in which any 
one of the outermost proportions lies in the nano-range 
or it has internal or surface structure in the nano-scale”, 
with nanoscale defined as the “length range lying 
between 1-100 nm” [49]. It has been found that these 
materials possess size dependent physicochemical 
properties, e.g. the optical properties, thus making 
them substances of great importance. For example, a 
20 nano metre gold, platinum, silver, and palladium 
nano particles possess wine red colour, yellowish 
grey, black and deep black colours, respectively [50]. 
These materials can be classified as 0-D (quantum 
dots), 1-D (surface films), 2-D (strands or fibres) or 
3-D (particles), based on their overall shape [51]. 
Several methods are being put in place for synthesising  
nano structure materials, such as chemical reduction 
[52], electrochemical reduction [53], photo-chemical 
reactions in reverse micelles [54], and bio-synthesis 
[18, 55-60].  Nanoparticles being complex particles 
in nature comprise of three layers i.e. (a) the surface 
layer, (b) the shell layer, and (c) the core, which 
is the centre of the nanoparticle and is commonly 
referred as the nanoparticle itself [61]. It is because of 
these special properties that these materials became 
a topic of immense interest for scientists in various 
fields, also their mesoporous nature making them an 
exceptional choice in drug delivery [62, 63], biological 
and chemical sensing [64, 65], gas sensing [66], CO2 
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capturing [67] and other related applications [68]. 
Properties like large fraction of atoms being present 
on the surface, high surface energy, receded structural 
demerits, that are a product of their size which is in 
nano range, are the ones that make them superior to 
their bulk counterparts. Huge surface area-volume 
proportion is a result of their small dimension leading 
to increased surface dependent characteristics. The 
energy-band construction and charge carrier density 
in these substances are tuneable which is not found 
in their bulk form, and thus change their optical and 
electronic properties [69]. Nanoparticles (NPs) attract 
higher attention these days because of their potential 
applications in different fields [70]. 

Nanocomposites in Pollutant 
Degradation

Nano-composite is a multi-phase solid material with 
one of the phases having 1, 2 or 3 dimensions < 10 nm 
or the repetitive distances between the varied phases 
constituting the composite lies in nanometre range. 
They are used to motif and fabricate novel substances 
with unparalleled pliability and betterment in their 
physical and chemical characteristics [71, 72]. The 
interface area between the matrix and reinforcement 
phase(s) is slightly higher than that for traditional 
composites resulting in unusually high surface area 
to volume ratio [73]. There is a visible effect on the 
bulk scale characteristics of the composite upon a 
comparatively minute level of nano-scale adulteration. 
The alignment and placement of unsymmetrical 
nano-particles, discrepancy in heat related properties 
at the interface, and poly-dispersity of nano-
particles fundamentally influence the viable thermal 
conductance of nano-composites [74]. The efficacy of 
the nano-particles is such that the quantity of material 
appended is usually just around 0.5-5% by wt. Nano-
composites can drastically upgrade properties like 
mechanical properties involving strength, modulus, 
electrical conductivity,  thermal stabili ty,  etc. 
Nanocomposites are found to be of different types 
based on their constituent components. CMCs (ceramic 
matrix composites) consist of ceramic fibres dispersed 
in a ceramic dispersion medium. In an ideal condition, 
both components are evenly dispersed into each other 
with the aim of  engendering discrete characteristics 
[75] along with other protective properties [76]. In 
the case of metal matrix nanocomposites, CNT-metal 
matrix composites are emerging as one of the more 

essential nano-composites. It is being made in order 
to make use of the immense tensile strength and 
electrical conductivity of CNTs [77]. In a simplest 
scenario, precise addition of nano particulates into a 
polymeric medium magnifies its efficiency, frequently 
drastically, via mere capitalization on the type and 
characteristics of the nano-scale add on. This method 
effectively yields increased efficiency composites, 
upon even addition of the filler and if the filler is of 
enhanced quality than that of the matrix  [78]. Doping 
is another method of synthesising composites, which 
can be employed as photocatalysts. Numerous studies 
on metal-doped TiO2 have been conducted in order 
to test the increase in photocatalytic efficiency for 
degradation of organic pollutants under UV and visible 
light irradiation. Fe, Sn, Pt were some of the doping 
metals chosen, among other transition metal ions. 
The transition metal ions have more than one valence 
states. Doping them into the pure crystal structure will 
be the same as the introduction of crystal defects in the 
lattice. These will then behave as shallow traps for the 
excitons which will decrease the recombination rate 
and increase the efficiency [79-82]. Nanocomposites 
that are capable of responding to an external stimulus 
are of immense interest. This superficial impetus can 
acquire various conformations. Magnetic materials are 
capable of responding to both electrical and magnetic 
stimuli, hence making them ultimately useful. The 
magnetic field can penetrate deeper thus affecting an 
increased nano-composite area [83]. The recovery 
of the nano-catalysts is the biggest challenge in 
photocatalytic degradation, which can be faced with the 
help of magnetic nanoparticles or nanocomposites for 
liquid-phase reactions such as hydrogenation, aerobic 
oxidation, carbonylation, etc. Traditionally, the nano-
catalysts are removed by high-speed centrifugation or 
sometimes even addition of extra chemicals, which can 
defeat the whole purpose of pollutant degradation. But, 
the ability of magnetic particles to respond to magnetic 
and electrical stimuli ease up their isolation from the 
solution and simplify the post-reaction processing and 
catalyst recycling. This holds true for even very fine 
and miniscule particulate catalysts [84].

Mechanism of Photocatalysis

Homogeneous and heterogeneous are the two 
types of photo-catalysis. The reactants and photo 
catalysts remain in the identical juncture in former. 
Ozone and photo Fenton systems (Fe+ & Fe+-H2O2) 
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are some of the homogeneous photocatalysts that have 
been used time and time again, with ·OH being the 
reactive species which serves different purposes. ·OH 
generation through ozone can occur via 2 pathways 
[85].
O3 + hν → O2 + O (1-D), (1) 
O (1-D) + H2O → ·OH + ·OH, (2)   
O (1-D) + H2O → H2O2, (3) 
and
H2O2 + hν → ·OH + ·OH. (4)

Following is the mechanism of ·OH production via 
Fenton system [86].

Fe2+ + H2O2→ HO· + Fe3+ + OH−, (5) 

Fe3+ + H2O2→ Fe2+ + 2(HO·) + H+, (6) 
and    

Fe2+ + HO· → Fe3+ + OH−, (7)

In heterogeneous catalysis, the catalyst and reactants 
are in different phases, transition metal oxides and 
semiconductors being the most frequently used 
photocatalysts, possessing unique characteristics. 
Metals have continuous electronic states whereas in 
semiconductors, there exists a void energy region 
which is depleted of any energy levels that can promote 
electron hole recombination in the solid. This empty 
region extending from the top to the bottom of the 
valence band and the conduction band, respectively, 
is termed as band-gap [87]. In one mechanism of the 
oxidative reaction, a hydroxyl radical is produced 
as a result of the reaction between positive holes 
and surface moisture. The beginning of the reaction 
is marked by the production of excitons upon light 
illumination on the metal oxide (MO) surface:

MO + hν → MO (h+ + e−), (8)

Following are the oxidising reactions as a result of 
the photo-catalytic phenomena:
h+ + H2O → H+ + ·OH, (9)
2h+ + 2H2O → 2 H+ + H2O2, (10) 
and
H2O2 → 2(·OH). (11)

Following are the reducing reactions as a result of the 
photo-catalytic phenomena:
e− + O2 → ·O2

−, (12)
·O2

− + H2O + H+ → H2O2 + O2, (13) 
and

H2O2 → 2(·OH). (14)

We can see that the hydroxyl radical generation 
takes place in both. These ·OH show highly oxidative 
behaviour and are non-selective, with E0 (redox 
potential) = +3.06 V [88].

Fig. 1 shows the general mechanism of photo-
catalysis .  The electronic construct ion of  the 
semiconductor photocatalyst comes into picture now, 
which consists of the valence and the conduction band. 
The energy difference between them is known as the 
band gap of the material. All the electrons and holes are 
in the valence band in their unexcited state [24]. Upon 
excitation by a light source, be it visible or UV, having 
energy equivalent or higher than its band-gap, the 
electrons jump from valence to conduction band. The 
light induced electrons and holes also can recombine 
in bulk or on the semiconductor surface, releasing heat 
or photons. The electrons & holes reaching the facet of 
the semiconductor then reduce or oxidise the adsorbed 
reactants (i.e., pollutants) [89].

Fig. 1  Process that occurs upon photoexcitation of catalyst.
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Synthetic dyes have become one of the most readily 
available organic pollutants in recent times. Azo 
bond (–N=N–) is known to be the weakest chemical 
bond in the chemical structure of dye molecules. The 
attack of ·OH radicals at this bond and breaking of 
the conjugate structure is what marks the initiation 
of the degradation in photocatalysis [90]. After that, 
the intermediate products of the degradation undergo 
radical chain reaction with O2 and in due course fester 
to form H2O and CO2 [91]. The response of dyes 
in the decomposition machinery depends on their 
chemical construction [92]. Dyes with complicated 
makeup commonly show lesser degradation upon light 
illumination, and the adsorption trends rely on the 
functional groups [93, 94]. Another tenacious organic 
pollutant that has profusely been under research are 
pesticides. The photo-degradation of many main 
categories of pesticides, herbicides, etc has been 
previously talked about [95]. 

Photocatalytic Reactors
We know that an arena is required for carrying 

out photocatalysis, this purpose being served by 
the photocatalytic reactors. In order to carry out the 
photocatalysis with maximum possible efficiency, the 
geometry of the reactor has to be in such a way that 
there is coherent contiguity between the contaminant 
and the photocatalyst and also the latter should be 
able to mop up enough number of photons from the 
light sources [96]. An ideal photocatalytic reactor, 

should be having high speed mass transferring 
system, high kinetic rate, and large reaction surface 
area. The basic design of the photo-catalytic reactor 
comprises of a source of light and a reactor anatomy. 
The decomposition process of biotic impurities by 
the photo-catalyst in the reactor takes place by mass 
transferring the associated reactants to the catalyst 
facet, i.e., adsorption or desorption, and subsequently 
photo-decomposition of the reactants [97]. PMR 
(photocatalytic membrane reactor) is an integrated 
machinery of photo-catalysis and membrane-filtration 
methods in order for a rich permeate production 
[98]. Slurry PMR is the most common photocatalytic 
reactor. It consists of freely suspended photocatalysts 
in the reactor structure [99]. The huge surface area of 
suspended particles inside the slurry reactor increases 
the rate of mass transferring among the substrates and 
catalysts and therefore enhances the photo-catalytic 
potency [100]. There are two groups of slurry PMR, 
separated photocatalytic membrane reactor (SPMR) 
and incorporated photocatalytic membrane reactor 
(IPMR) [101].

Fig. 2 shows another type of reactor, i.e., a PTR 
(parabolic trough reactor), which is an enhancement of 
traditional photo-reactor. 

It comprises of see-through trough collectors for 
wastewater flux. The collector facet is reflective and 
parabolic [102]. The drawbacks of PTR were overcome 
by the invention of CPC (Compound Parabolic 
Concentrator) reactor (Fig. 3). 

Fig. 2  Schematic of parabolic trough reactor.
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It is a merger of the excellent properties of both 
parabolic concentrator and fixed flat setup [103]. CPC 
system includes numerous cylinder shaped ducts along 
with stagnant collectors having reflective facet making 
a baroque around the ducts [104]. 

Organic Pollutants

The traditional water treatment technologies have 
consistently failed in complete decomposition of 
biotic impurities in aqueous media, thus making them 
of more concern [105]. Organic dyes, pesticides, 
oils, greases, and so on are some of the organic 
contaminants among others [106]. Their chemical 
stability and less biodegradability in water, make them 
potentially hazardous to the environment [107, 108]. 
Organic dyes absorb and then reflect the sunlight that 
enters the water. This hinders the bacterial growth 
resulting in difficulty with impurity degradation [109]. 
When the organic pollutants are released into the water 
bodies, they create numerous problems in the aquatic 
ecosystem. These problems can include clogging 
of sewage treatment plants, increase in biochemical 
oxygen and adverse effects on aquatic biota [110, 
111]. Organic pollutants are of numerous types. VOCs 
(volatile organic compounds) are proven hazardous and 
mutagenic. They also play a major role in the thinning 
of the ozone layer alongside their aid to global warming 
[112]. These contaminants cause gene mutations and 
thus have become the ones to blame for the appearance 
of bacteria that are resistant to antibiotic [113]. POPs 
(persistent organic pollutants), are organic compounds 
that are also termed as “forever chemicals” due to 

their immunity towards environmental degradation 
through chemical, biological and photolytic processes 
[114]. When they are released in the ecosystem, they 
don’t easily degrade and can stay as it is for extreme 
durations, for ex, PCBs (polychlorinated biphenyls), 
not to mention their entrance in food-chains and 
accumulation to fatal levels for the living beings at 
top of the food-chain [11]. Many POPs have been 
extensively used in the present as well as the past as 
pesticides, solvents, pharmaceuticals, and industrial 
chemicals. Although few of them are found in nature, 
for example in volcanoes and various biosynthetic 
pathways, most of them are man-made [115] through 
total synthesis. Organic pollutants come along with 
the ease of their transportation from the source to a 
fresh environment via air (in the form of vapor) or 
water currents (in the form of dust particulates or 
sediments), making them even bigger threat [11]. 
NOM (natural organic matter), is the term used to 
refer to an aggregation of biotic substances that 
are found in nature upon plant and animal material 
degradation [116]. Natural organic matter components 
are heterogeneous mixture of complex hydrophobic 
and hydrophilic organic materials. The microbial by-
products are the hydrophilic components containing 
a greater amount of carbon chains and nitrogen 
containing compounds [117]. The hydrophobic fraction 
is composed of the humic substances (HS) which 
demonstrate comparatively high SUVA (specific ultra-
violet absorbance) values owing to the comparatively 
larger proportion of aromatic carbon, double bonds, 
etc [4]. The compounds that cannot be degraded 
easily and/or demonstrate a lower proportion of 
biological and chemical oxygen demand (BOD/
COD) are grouped as refractory [118, 119]. These 
compounds are quite immune to biodegradation, 
are malignant and impede bacterial growth, thus 
posing a threat water and wastewater treatment 
systems [120]. The typical refractory pollutants are 
the organics having high molecular weight [121]. They 
are inclusive of lignin. tannic acid, chlortetracycline, 
and EDTA coming from kraft mills, electroplating and 
pharmaceutical industries, etc. [13]. 

Photo-catalytic Organic Conta-
minant Decomposition

Semiconductor based photocatalysis has become 
more alluring in comparison to the traditional chemical-
oxidation pathways for degradation of pernicious 

Fig. 3  Schematic of a typical compound parabolic concentrator.
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substances in water at appropriate conditions with 
economical and clean solar light and atmospheric 
dioxygen serving as the source of energy and oxidant, 
respectively, into H2O, CO2 and inorganic ions [122]. 
Recent studies show that the organic substrates 
strongly absorb the visible light. Therefore visible light 
augments the Fenton reaction for the decomposition of 
dye pollutants [123, 124]. These studies have increased 
the prospective of the employment of visible light in 
water treatment two folds. Semiconductors: (i) are 
economical, (ii) are benign, (iii) have large facet area, 
(iv) possess wide absorption spectrum, (v) showcase 
tuneable characteristics that could be altered via size 
curtailment, doping, etc., (vi) afford facility for multi-
electron transfer mechanism and (vii) are capable of 
extended usage without significant forfeiture of photo-
catalytic activity, are being used excessively [12, 125-
127]. The prerequisite for coherent decomposition 
of dyes is a photocatalyst with befitting band-gap 
and excellent adsorption trends in the visible arena 
[128]. CdS being a material of direct band gap of ~2.4 
electron volt is a propitious substance, the possibility of 
upgradation of its photocatalytic pursuit via activation 
by other materials adds to its charm [129]. We consider 
an example of CdS and ZnS nanoparticles and their 
nanocomposites, respectively, in order to get a clarity 
of the photo-catalytic activity shown by nanoparticles 
and nanocomposites. When zinc sulphide and cadmium 
sulphide are illuminated by light, they produce e- - h+ 
pairs which are strong oxidizing agents and reducing 
agents, respectively:
ZnS + hυ → h+ + e-   and   CdS + hυ → h+ + e-.       (15)

Following are the oxidising and reducing reactions:
OH- + h+ → ·OH   and   O2 + e- → O2

-. (16)

It is to be noted that the hydroxyl radical serves the 
purpose of the primary oxidant in the decomposition 
mechanism. O2 checks the re-integration of electron-
hole pairs. CO2 and H2O among others emerge as the 
end products of a complete reaction [130, 131]:

Organic Pollutant + ·OH → products 

(CO2 + H2O + NH4
+ + NO3

- + SO4
2- + Cl-). (17)

The photodegradation of methylene blue (MB), a 
dye, in terms of absorption spectra and as a function 
of radiation time in the presence of zinc sulphide 
and cadmium sulphide nano particles under visible 
radiations has been studied by many people [129].

It was found that the sharpness of the adsorption 
peaks gingerly plummeted as the duration of subjection 

grew. The amount of methylene blue was halved after 
210 minutes in the case of CdS photocatalyst. It gained 
the upper hand by demonstrating a decomposition 
competence of 63% after 360 minutes. On the other 
hand ZnS showed an efficiency of merely 30% after 
360 minutes [132]. The contrast in the photo-catalytic 
schemes of zinc sulphide and cadmium sulphide nano-
particles can be completely attributed to their band 
gap. Fig. 4 shows the band structures of zinc sulphide 
and cadmium sulphide.

ZnS has a large band gap. Hence it showcases a 
weak reaction to visible radiation, even though its 
CB (conduction band) bottom potential is adequately 
negative. In disparity, CdS is an excellent absorber of 
visible light, the quality attributed to its small band 
gap. Although the CB bottom potential of CdS is 
close to that of O2/O2

- (−0.046 eV vs. SHE) [133]. In 
this case, the dispersion of CdS was improved by the 
separation feature of ZnS, leading to production of 
higher surface area and generation of a greater number 
of active sites. The band structure illustrates the higher 
negativity of the conduction band of CdS than that of 
ZnS. The photo-generated electrons in the conduction 
band of CdS were transferred to the conduction band of 
ZnS whilst the holes remain in the valence band of CdS 
due to the potential gradient created at the interface. 
This leads to decrease in charge recombination rate 
and strengthens the charge separation effect, thus 
increasing the efficiency.

A study done by Liu et. al. shows that for different 
dyes,  the ZnS/CdS composi tes  own stronger 
decomposition capability than the constituent ZnS and 
CdS individually [134]. Moreover, it is even found 
to surpass the degradation capability of mercantile 
anatase TiO2 (P-25) for Methylene Blue, Rhodamine 
B. The above graphs show that the decomposition 
rates of ZnS/CdS composite rises in comparison to 

Fig. 4  Band construction schematics of zinc sulphide and 
cadmium sulphide nano-particles.
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ZnS and mercantile anatase TiO2. It touches 85% for 
Methylene Blue and 84% for Rhodamine B [134]. 
The above example of ZnS and CdS nanoparticles and 
nanocomposites, respectively helps us to understand 
the rise in the photodecomposition potency of 
the catalysts when they are in composite form, as 
compared to their potency in particulate form. CdS has 
a band gap of 2.4 eV which is narrow in comparison to 
other wide band gap semiconductors such as titanium 
dioxide. When CdS nanoparticles are used as catalysts 
for photocatalytic degradation, they absorb in some 
parts of UV as well as a large part of visible region 
which makes it more feasible. The disadvantage 
coming in as the poor charge separation and high 
charge recombination, as a result of small band gap can 
be overcome when CdS based nanocomposites are used 
as photocatalyst. The absorption range is broadened, 
along with that, the efficiency of the catalyst increases 
since increased charge separation is achieved [135].

There are numerous studies that have been carried 
out on different CdS based nanocomposites. In a study 
it was shown that Au-CdS nanocomposite prepared via 
facile synthesis was able to degrade 95% rhodamine 
b dye under UV visible light source [136]. In other 
researches as well, nanocomposites like CdS-Graphene 
and CuS-CdS have been reported to show degradation 

efficiency up to 90% and 99.97%, respectively [137, 
138]. The number of cycles for the use of photocatalyst 
varies depending on the type of composite synthesized. 
For the Bi2WO6/CdS nanocomposite, 92% degradation 
efficiency was achieved for Methylene Blue dye 
[133]. The catalyst was used for 5 cycles, with the 
efficiency reducing significantly by the 5th cycle. This 
reduction in the efficiency with subsequent cycles can 
be a result of blocking of the active sites. Also, the 
separation of the catalysts from the solution serves as 
a challenge due to the nano size of the photocatalysts. 
Table 1 shows how various CdS based nanocomposites 
are being synthesised by various methods and are 
being employed for UV or visible light induced 
photocatalysis, with considerable efficiency [136-146].

Conclusions

Water makes up about 71% of the earth’s surface. 
This clearly indicates the immediate need to keep 
the water resources contamination free. The non-
degradable and mutagenic properties of organic 
and inorganic pollutants have made them a serious 
threat  to both environment and i ts  creatures, 
including humans. Organic dyes, POPs, NOMs, 
VOCs constitute the list of organic pollutants. We, 

Table 1  Comparison of degradation efficiencies of different CdS based nanocomposites

Catalyst Pollutant Constant parameter Degradation (%) Catalyst preparation method Reference

Au / CdS Rhodamine b (Rh B) dye Light source – UV visible
Irradiation time – 75 min ~95% Facile [136]

PVAassisted
Bi2WO6 / CdS

Metronidazole and
methylene Blue

Light source – Visible
irradiation time – 100 min

70% (Metronidazole)
92% (Methylene blue) Hydrothermal [137]

CdS / Graphene Methyl orange Light source – Visible
irradiation time – 300 min 90 % Hydrothermal [138]

CdS / RGO Methylene blue Light source – Visible
irradiation time – 150 min 77 % PLAL (Pulsed laser-ablation

in liquids) [139]

CdS / TiO2 Phenol Light source – Visible
irradiation time – 4 h 40% Reverse micelle process [140]

CdS / ZnO Methylene blue Light source – Visible
irradiation time – 300 min 71.1% Precipitation method [141]

CuS / CdS Methylene blue Light source – Visible
irradiation time – 10 min 99.97% Hydrothermal [142]

Fe3O4 / CdS Methyl orange Light source – UV
Irradiation time – 50 min 89% Sono-chemical [143]

NiS / CdS Quinoline Light source – Visible
irradiation time – 10 h 81% Facile [144]

SnS2 / CdS Methyl orange Light source – Visible
irradiation time – 150 min 95.45% Chemical [145]

TiO2 nanotubes /
ZnO / CdS Alizarin red S (ARS) Light source – Ultraviolet

irradiation time – 180 min 75% Electrochemical method [146]
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in this paper, made an attempt to summarise the 
role of organic pollutants in degrading the water 
quality, hindering the food chain and hazarding 
the human health and their effective treatment by 
photocatalysis. Photocatalysis has emerged as an 
effective way of water treatment upon the continuous 
failures of conventional methods in doing so. The 
choice of photocatalysts is the key to the success of 
the former in achieving water purity. Semiconductor 
nanoparticles and nano-composites have constantly 
proved their worth in the photocatalytic arena in the 
recent times. Nanoparticles, as already known, have 
high surface area to volume ratio, making them an 
excellent choice for deployment as catalysts. Also, the 
synthesis of these nanoparticles and nanocomposites 
can be done via various pathways, physical, chemical 
or biological. The increasing biological synthesis 
of these materials these days tends to lessen their 
toxicity, making them mild yet effective. This 
also gives rise to a plethora of advantages in using 
them as catalysts for water purification. We have 
highlighted the superiority of cadmium sulphide-
based nanocomposites as efficient photocatalysts 
against other semiconductor nanoparticles or nano 
composites. The mechanism of photocatalysis can 
be both homogeneous and heterogeneous, with 
the former using ozone or photo-Fenton systems 
as photocatalysts and the latter using transition 
metal oxides or semiconductors as photocatalysts. 
Visible light is being employed extensively for 
photocatalytic degradation of organic dyes these 
days. The photocatalytic mechanism takes place in 
the photocatalytic reactors, the kind of which brings 
a great impact on the technique. With time, many 
variations are being made in these reactors, thus 
increasing the degradation efficiency and quality. 
Overall, this paper highlights the perks of employment 
of cadmium sulphide-based photo-catalysts for the 
decomposition of biotic impurities, clearly showing 
its high degradation efficiency. However, the need to 
decrease the irradiation time of the visible or UV light 
during the process for faster degradation still needs 
to be catered to, opening new pursuable research 
avenues.
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