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Abstract
                         

TiO2 nanoparticles were prepared by using electrochemical anodization method. UV-Vis absorption 
spectrum of TiO2 and TiO2: piperine nanoparticles have an absorption edge in the range of (340 -355) 
nm, suggesting that the TiO2 colloidal obtained is anatase phase. The band gap energy (Eg) for TiO2 
nanoparticles (3.46 eV) is higher than the value of (3.20 eV) for bulk TiO2. X-Ray diffraction results 
for TiO2 nanoparticles with a wavelength of 1.54 Å were investgation in this work. Planes (101), (200), 
(111), (220), (210), (211), (105), (220), (310), (221), and (220) crystal planes all had peaks with the 
lattice constants a = 3.755 Å and c = 9.5114 Å confirms the anatase phases of the TiO2 nanoparticles 
according to the JCPDS file 21-127231. Scanning Electron Microscope images of TiO2 samples in 
revealed the prevalence spherical nanosized crystallites, where clear nanostructures with a grain size 
of 15 nm. In TEM image, the shape of the nanoparticles was spherecial, with small size variance and 
found to be 15 nm. The EDX study of the nanoparticle reflects the atomic percentage of elements such 
as Ti and O with a ratio of 83:17 and no other peaks are observed this confirm the presence of TiO2 
nanoparticles.
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Introduction

Piperine, a dietary polyphenol isolated from black 
and long peppers, distinguished with its intrinsic 
features, does not only improve curcumin’s existing 
anti-cancer activity, but also its extremely poor 
bioavailability (Teiten et al., 2010; Patial et al., 2015; 
Tang et al., 2017). Besides, piperine alone possesses 
anti-mutagenic and anti-tumor influences (Srinivasan, 
2007; Chinta et al., 2015). Piperine has been widely 
reported to inhibit the growth of colon cancer cell lines 
by G1 arrest in cell cycle and by triggering apoptosis 

(Yaffe et al., 2015), and to enhance exhibition of 
antitumor activities in prostate cancer (Ouyang et 
al., 2013). Despite the proven antitumor activities 
of curcumin and piperine, the low solubility and the 
poor chemical stability of the compounds in water, 
largely limit their clinical applications. Targeted and 
triggered drug delivery systems accompanied by 
nanoparticle technology have been investigated as a 
prominent strategy to address these limitations (Bisht 
and Maitra, 2009; Ucisik et al., 2013b; Yallapu et 
al., 2013; Purpura et al., 2018; Wong et al., 2019). 
Polymeric nanoparticles (Anand et al., 2010; Bisht 
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et al., 2010; Mahmood et al., 2015; Pachauri et al., 
2015), cyclodextrin nanoparticles (Ndong Ntoutoume 
et al., 2016; Dash and Konkimalla, 2017b), liposomes 
(Li et al., 2005; Dutta and Bhattacharjee, 2017), mixed 
and copolymeric micelles (Gou et al., 2011; Wang et 
al., 2012; Li et al., 2015; Hevus et al., 2017), and solid 
lipid nanoparticles (Ucisik et al., 2013b; Jourghanian 
et al., 2016) are among the mostly applied curcumin 
and piperine nanoformulations (Naksuriya et al., 
2014; Mahran et al., 2017). As a lipid-based, safe 
and surfactant-free system, emulsomes emerge as a 
promising drug delivery system among the alternatives 
[1]. TiO2 exists in three different crystalline habits: 
rutile (tetragonal), anatase (tetragonal) and brookite 
(orthormbic). Both anatase and rutile have tetragonal 
crystal structure but belong to different phase groups. 
Anatase has the space group I41/ amd [4] with four 
formula units in one unit cell and rutile has the space 
group P42/ mnm [2] with two TiO2 formula units in 
one unit cell [3]. The low- density solid phases are 
less stable and undergo transition rutile in the solid 
state. Rutile TiO2 has some advantages over anatase 
phase, such as higher refractive index, higher dielectric 
constant, higher electric resistance and higher chemical 
stability. The transformation is accelerated by heat 
treatment and occurs at temperture degrees in the 
range of (450-1200) °C [4]. This transformation is 
dependent on several parameters such as initial particle 
size, initial phase, dopant concentration, reaction 
atmosphere and annealing temperture [5, 6]. Among 
several metal oxide nanoparticles, titanium dioxide 
nanoparticles (TiO2 NPs) are non-toxic with oxidation 
potency and elevated stability to light resulting into 
their broad applications in environmental remediation 
[7, 8]. In addition, TiO2 NPs possess fascinating 
dielectric, optical, antimicrobial, chemical and catalytic 
properties which lead to industrial applications such as 
cosmetics, pigment, fillers, whitening and brightening 
of foods, in personal care products like toothpaste, 
and photocatalyst [9-14]. The vital applications of 
nano TiO2 are photocatalytic degradation and splitting; 
PV cells, electrochromic and electronic devices, and 
sensing instruments have heartened huge interest and 
widespread advancement for synthesis of TiO2 NPs 
[15-18]. TiO2 NPs have been widely used in daily 
life and can be synthesized through various physical, 
chemical, and green methods [19]. Various chemical 
synthesis techniques are largely employed for the 
synthesis of TiO2 nanoparticles such as sol-gel method 
[20], solvo-thermal method [21] co precipitation 
method [22], and hydrothermal method [23]. Green 

TiO2 NPs have good points rather than chemically 
synthesized NPs as they have a good antifungal as well 
as antimicrobial activity [24-26].

The purpose of the present manuscript is the 
determination of an improved chemical synthesis of 
TiO2 NPs using piperine with conditions that could be 
easily reproducible in industry, both in terms of energy 
saving and cost reduction.

Experimental 
Experimental Section 

Titanium Tetrachloride TiCl4 99.99% and absolute 
ethanol CH3CH2OH 99.99% for producing TiO2 
nanoparticles by adding drop wise from TiCl4 in 
ethanol with 1:10 ratio under centrifuge with 8 hour. 
The reaction was performed at room temperature while 
stirring under fume hood due to the large amount of 
Cl2 and HCl at 30 min. The solution was left to rest and 
cool back at room temperature for 2 hour, then after that 
measured the pH of the solution in the range of (1-2). 
Before electrochemical anodization, titanium (Ti) foils 
(250 μm thick, purity 97%) with a size of 1 cm×2.5 cm 
were degreased by ultra-sonication in a mixture (15 
mL) for each one of acetone, methanol, and methylene 
chloride for 30 min, followed by washing with a 
large amount of distilled water and drying with N2. 
Electrochemical anodization was carried out in a two-
electrode cell using a power source PS-3030, where 
the Ti foil was used as the anode and cathod electrode 
after annealing at 800 °C for 4 hour. Anodization 
electrolytes were fabricated by using above solution 
TiO2 with 30 volt. Each potential static anodization 
was performed under the room temperature of ~23 °C, 
after a certain period of anodization, 2 hour; The final 
solution was dried at 80 °C until powder was formed. 
The obtained TiO2 powder was calcined for two hours 
in the box furnace at 500 °C in an ambient atmosphere 
in this temperature getting TiO2 nanoparticles in anatase 
phase when increasing the temperature degree to 900 
°C the phase transformation from anatase to rutile 
in TiO2 powder [27]. TiO2: piperine nanostructure 
construction using (2.5 gm in 50 mL distilled water) of 
TiO2 nanoparticles droped in (2.5 gm in 50 mL distilled 
water) Piperine ratio 50:50 mL. 

Measurements and characterization

X-Ray diffraction (XRD) pattern 

In order to explain the structural properties, the 
nature and the crystal growth of TiO2 nanoparticles, 
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X-ray diffraction measurement was carried out 
done according to the ASTM (American Society of 
Testingn Materials) cards, using (Philips pw 1050 
X-ray diffractometer of 1.54 Å from Cu-kα, Japan). Cu 
radiation source, at a scanning speed of 2 min-1, 40 kV 
tube voltage, and 30 mA tube current.

The crystallinity of synthesized material, the average 
particle (green) size (Dg) of TiO2 NPs has mostly 
calculated by using the Debye–Scherrer’s equation 
after the successful synthesis [28, 29]. The Scherrer’s 
equation is considered as the most fundamental and 
widely used equation to calculate the particle size by 
the combination of 2θ and FWMH values from the 
XRD data.         

D = Kλβcosθ	 (1) 

In this equation, D represents the Particle size 
(Diameter), K is Scherrer’s constant (0.9), λ = 0.15406 
nm (Wavelength of X-ray source), β represents Full 
width at Half-maximum intensity (FWHM) in radians 
and q is used to denote the Peak positions in (Radians), 
and θ is the Bragg’s diffraction angle of the respective 
XRD peak.

Scanning electron microscopy and energy 
dispersive spectroscopy (EDSX)

The scanning electron microscope (SEM) is a 
type of electron microscope using an electron beam 
energy of 15 keV and a beam current of 2.62 A. The 
SEM study has been carried out by Hitachi (S-4160) 
scanning electron microscope the magnification 
power continuous form 6x to 100,000x. The setting 
in thin film laboratory at University of Tehran. 
Scanning electron microscopy (SEM) images of the 
same samples were recorded with a LED-1430VP 
microscope using an electron beam energy of 15 keV 
and a beam current of 2.62 A.

Transmission electron microscopy

Transmission Electron Microscope ((TEM) JEOL 
JEM 1400, Japan) was used for investigating the size 
and shape of nanoparticles.  

 Optical properties measurements

Optical transition measurement: A double-beam 
(UIR-210A spectrophotometer from Shimadzu, Japan) 
was used in order to record the optical transmission and 
absorption spectra of the TiO2 nanoparticles within the 
wavelength range (300-900 nm). It is generally used for 
characterizing various metal nanoparticles in the size 
range of 2-100 nm and more [30, 31]. The optical band 

gap was estimated graphically by applying the Tauce 
model; the band gap of the prepared material with 
sharp fall off can be deduced from a plot of the squared 
absorption coefficient (αhυ)2 versus photon energy (hυ) 
by extrapolating the straight line of the plot to intersect 
the energy axis. UV-vis absorption measurements were 
recorded on UV-vis Spectrophotometer-UVD-3200 
(LABOMED, Los Angeles, CA, USA). Furthermore, 
UV-vis spectrum of TiO2 is used to calculate the band 
gap energy (Eg) using well known Tauc’s equation [32, 
33]. 

 αhν = A(hν – Eg)	 (2)

Where α: absorption coefficient, h: Planks constant 
(6.626 × 10-34 J s), ν: light frequency, A: constant, Eg: 
optical band gap energy value of the semiconductor 
TiO2.

FTIR measurement

Fourier Transform-Infrared Spectroscopy (FTIR) 
probes the molecular vibrations of molecules. Light 
of different energies (or frequency, represented by 
wavenumbers in the spectrum above) is directed 
through a sample. When a particular energy (or 
freguency) of light matches a vibrational frequency 
of the molecule, the molecule absorbs the light and 
vibrates. Peaks in an infrared spectrum are upside-
down compared to other forms of spectroscopy to 
convey that the peak is a decreased intensity, or 
absorbance of light. The (SHIMADZU- 8400S, 
Koyoto, Japan) Scan of the FTIR measurements are 
performed over the range between (400-4000) cm-1 for 
the prepared sample.

Results and Discussions
X-Ray diffraction results for TiO2 nanoparticles

Figure 1 shows the X-Ray diffraction results for 
TiO2 nanoparticles using X-rays with a wavelength of 
1.54 Å. Planes (101), (200), (111), (220), (210), (211), 
(105), (220), (310), (221), and (220) crystal planes all 
had peaks with the lattice constants a = 3.755 Å and 
c = 9.5114 Å confirms the anatase phases of the TiO2 
nanoparticles according to the JCPDS file 21-1272 
31. X-ray diffraction profiles are usually influenced 
by crystallite size and lattice strain. The fact that 
the crystalline sizes of the samples are very small 
causes the peaks to broaden. Moreover, the intensities 
difraction peak decreases and becomes broader for 
TiO2: piperine nanoparticles indicating smaller particle 
size [34], which is important for quality and decreasing 
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TiO2 tixiocity.

LD50 measurement of nanoparticles toxicity for 
60 days was measured after observing the number of 
dead mice. Changes in the weight of the mice and its 
organs including Brain, Heart, liver and kidneys were 
evaluated due to the administration of various doses of 
the TiO2: Piperine nanostructure according to the organ 
index formula:
Organ Index =
Wt. of experimental organ / Wt. of the experimental mice

Wt. of control organ / Wt. of the control mice (3)

Scanning Electron Microscope (SEM) images 
of TiO2 samples

Scanning Electron Microscope (SEM) images of 
TiO2 nanoparticles are shown in Fig. 2(a) and 2(b). 
Clear nanostructures with a grain size of 15 nm can 
be observed. The TiO2 nanoparticles seen in the 
SEM picture clearly contain a number of crystallites 
(see Fig. 2(a)). The grain size of TiO2 nanoparticles 

characterized in XRD-Diffractometer by Debye-Sherrer 
equation is smaller than the results observed by SEM 
as compared to XRD results. As the solution stringed 
in a short time, the TiO2 nanoparticles agglomerated, 
as shown by scanning electron microscopy (SEM) 
images. All scattered particles with a size less than 17 
nm were seen in these images.  By using SEM analysis, 
TiO2: piperine NPs are in a spherical shape with small 
pores and normally found in the cluster that forms the 
bunch type surface (Fig. 2(b)).

Transmission Electron Microscope (TEM) 
images of TiO2 samples

TEM images were used to assess the morphology, 
crystallinity, and size of synthesized TiO2 and TiO2: 
piperine nanoparticles. The shape of the nanoparticles 
was spherecial and small size variance (see Fig. 
3). The scale was between 10 and 20 nanometers. 
The nanoparticles were found to be 15 nm in size 
on average. Synthesized TiO2 and TiO2: piperine 

Table 1 Organ index of Brain, Heart, liver and kidneys of mice exposed to TiO2: Piperinefor 60 days compared with normal organs 
obtained from the control mice

Organ index, Mean ± SD

groups Brain P value Heart P value Liver P value kidney P value
 Control
2 mg/mL
4 mg/mL
6 mg/mL

0.93 ± 0.058
0.95 ± 0.053
1.12 ± 0.065
1.12 ± 0.058

p > 0.05
p > 0.05
p > 0.05

1.01 ± 0.064
1.20 ± 0.055
0.95 ± 0.049
0.96 ± 0.050

p > 0.05
p > 0.05
p > 0.05

1.26 ± 0.048
1.11 ± 0.057
1.13 ± 0.054
1.15 ± 0.057

p > 0.05
p > 0.05
p > 0.05

1.04 ± 0.049
1.13 ± 0.059
0.94 ± 0.066
1.10 ± 0.063

p > 0.05
p > 0.05
p > 0.05

Fig. 1 X-Ray diffraction results for TiO2 and TiO2: piperine nanoparticles.
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nanoparticles are in anatase process with strong 
crystallinity and dotted concentric circles, which can be 
assigned to the spherical form of TiO2, as determined 
by XRD analysis. All of this is depicted in Fig. 3. The 
diameter of the TiO2 particles was noticed to be smaller 
for piperne modified TiO2 nanoparticles (8-10 nm) (Fig. 
3(b)) as compared to chemically prepared TiO2. The 
TEM results were found to be ingood agreement with 
the XRD measurements. 

EDXS results of TiO2 samples

EDX analysis was used to determine the elemental 
composition of the TiO2 nanostructure, as shown in the 
Fig. 4. The EDX study of the nanoparticle (installed in 

SEM) reflects the atomic percentage (percentage) of 
elements such as Ti and O, which are clearly visible 
in the images with a ratio of 83:17 and no other 
peaks are observed this confirm the presence of TiO 
nanoparticles. 
Absorption

The effect of growing conditions on the optical 
properties of prepared films has been thoroughly 
investigated. Figure 5(a) and 5(b) shows that the UV-
Vis absorption spectrum of TiO2 and TiO2: piperine 
nanoparticles solution has an absorption edge in 
the range of (340-355) nm, suggesting that the TiO2 
colloidal solution obtained is anatase phase. The band 
gap energies (Eg) of the prepared TiO2 nanoparticles 
(3.46 eV) are higher than the value of (3.2 eV) for 
bulk TiO2, as shown in Fig. 5. This can be explained 
by the fact that the band gap of semiconductors is 
particle size dependent. The band distance widens 
as particle size decreases, and the absorption edge 
shifts to a higher energy (blue shift) as particle 
size decreases. The absorption onset of the present 
samples can be attributed to the direct transfer of 
electrons in TiO2 nanocrystals, based on the blue 
change of the absorption location from bulk TiO2. The 
absorption spectrum of UV-Visible (wavelength versus 

Fig. 3 TEM results for (a) TiO2 and (b) TiO2: piperine nanoparticles.
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absorbance) exhibits two peaks at wavelength of 260 
nmand 325 nm, that its unique of TiO2 NPs well in an 
agreement with the reported results [35, 36]. UV-vis 
spectroscopy has also been used for the confirmation 
of TiO2 NPs formation in aqueous solution.

Fourier transformation-Infrared spectroscopy 
(FTIR) results of TiO2 nanoparticles

The results of Fourier transformation-Infrared 
spectroscopy provide detail. About the structure of the 
phases and how oxygen binds to metal ions. The FTIR 
spectra of TiO2 nanoparticles are shown in the figure 
below (see Fig. 6). The peaks in the FTIR spectrum of 
TiO2 nanoparticles corresponding to 3454 cm-1 are due 

to the stretching of the H-bond of the O-H (Alcohol) 
group, as shown in Fig. 6. C=C corresponds to the 
peaks seen at 1627 cm-1 and 1419 cm-1 (medium weak 
multiple bands). The stretching and vibration modes 
of O–Ti–O are shown in the TiO2 sample by the peaks 
corresponding to 665cm-1 and 648 cm-1. As Ti atoms 
collide with oxygen, the mean kinetic energy of the 
Ti atoms decreases, resulting in the formation of (O+2) 
ions (through energetic change reaction of Ti with O2 
molecules). As a result, chemical bonding such as (O–
Ti–O) stretching modes are formed.  

This absorption peak in between the wavenumber 
range 650-700 cm-1 is the characteristic peak of 

Fig. 5 Absorption results for TiO2, piperine and TiO2: piperine nanoparticles.
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TiO2 NPs anatase phase as cited in the literature [26, 
37]. The peaks appearing in between the range of 
1000-1300 cm-1 can be associated to mainly Ti‒O‒
Ti vibrations which clearly showed O‒Ti‒O bond. 
According to literature, the FTIR spectrum of TiO2 
nanomaterials prepared with and without CHE present 
similar FTIR spectra with peak around 450 cm cm-1 

assigned to stretching vibration of Ti–O–Ti bonds. The 
broad band at 3428 cm-1 can be ascribed to the –OH 
stretching vibration of the adsorbed water molecules 
on TiO2 surface and the peak around 1630 cm-1 is 
attributed to the bending vibrations of –OH.     
PL spectra

To study the separation efficiency of photogenerated 
electrons and holes, the room temperature PL spectra 
of the as-synthesized composite structure TiO2 were 
carried out, respectively. Figure 7 exhibits the PL 
spectra of all samples. The decrease of PL intensity 
indicates the efficient electron-hole separation and 
long-lived carriers. 

Antibacterial Activity of Nanoparticles  

 The antibacterial activity of the nanoparticles was 
investigated using S. aureus and E. coli. The zones of 

inhibition after exposing the organisms to different 
concentrations of nanoparticles were measured and 
presented in Figs. 8(a) and 8(b). The antibacterial 
activity of TiO2 NPs and TiO2: piperine was tested on 
the following Bacteria S. aureus and E. coli. A figure 
reveals the zone of inhibition diameter of TiO2 NPs 
and TiO2: piperine NPs on bacteria strains, in which 
that TiO2: piperine NPs exhibited higher effect on 
E. coli and S. aureus. The inhibition zone increased 
significantly with increasing the concentration of TiO2: 
piperine NPs. S. aureus was more sensitive to TiO2: 

Fig. 7 PL spectra for TiO2 nanoparticles. 
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piperine NPs than E. coli. E. coli is a Gram-negative 
bacterium and it is less susceptible to antimicrobials 
than Gram-positive bacteria like S. aureus because it is 
more resistant to lipophilic and amphiphilic inhibitors 
than those Gram positive, including dyes, detergents, 
free fatty acids, antibiotics and chemotherapeutics 
agents may be attributed to the presence of the outer 
membrane. The pore channels slowed the penetration 
of small hydrophilic solutes and the low fluidity of the 
lipopolysaccharide layer decreased the rate of Trans 
membrane diffusion of lipophilic solutes.  

Conclusions

 The synthesize of TiO2 NPs characterized by SEM, 
TEM, FE-SEM, EDX, various results confirmed 
the spherical shape and clustered form of TiO2 NPs. 
SEM images TiO2 sample prepared chemically 
showed  agglomeration of TiO2 particles comparing to 
piperene modified TiO2 particles. The diameter of the 
TiO2 particles was noticed to be smaller for piperne 
modified TiO2 nanoparticles (8-10 nm) as compared to 
chemically prepared TiO2. The TEM results were found 
to be ingood agreement with the XRD measurements. 
The intensities difraction peak decreases and becomes 
broader for TiO2: piperine nanoparticles indicating 
smaller particle size which is important for quality and 
decreasing TiO2 tixiocity.
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