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Abstract  
Digital microfluidics technology offers a platform for developing diagnostic applications with the advantages of portability, sample 
and reagent volume reduction, faster analysis, increased automation, low power consumption, compatibility with mass manufacturing 
and high throughput. In addition to diagnostics, digital microfluidics is finding use in nucleic acid analysis, peptide and protein 
analysis, cell analysis, drug analysis and delivery and immunization analysis. In this review, we describe these applications, their 
implementation, and associated design issues. As other review in the digital microfluidics technology, there have been and will be 
unexpected developments as DMF matures, but we predict that the future is bright for this promising technology at the last section.  
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1. The advent and development of digi-
tal microfluidics technology  

Traditional (continuous-flow) microfluidic technolo-
gies are based on the continuous flow of liquid through 
microfabricated channels [1]. Continuous-flow systems 
are inherently difficult to integrate because the parame-
ters that govern flow field (e.g. pressure, fluid resis-
tance, electric field strength) vary along the flow-path, 
making the flow at any location dependent upon the 
properties of the entire system. 

The concept of digital microfluidics (DMF) arose in 
the late 1990s and involves the manipulation of discrete 
volumes of liquids on a surface. Manipulation of drop-
lets can occur through various mechanisms, including 
electrowetting [2], dielectrophoresis [3], thermocapil-
lary transport [4] and surface acoustic wave transport 
[5]. 

DMF was popularized in the early 2000s by Fair and 
coworkers [6] and Kim and coworkers [7] at Duke and 
UCLA, respectively. The technique was explained as 
being a phenomenon driven by surface tension, and 
was called “electrowetting” or “electrowetting on-
dielectric” (EWOD). A detailed review of electrowet-
ting basics can be found in the work of Mugele [8]. In 
addition, work on simulation and modeling of droplet-
based electrowetting has been reported by Biddut Bhat-
tacharjee and Homayoun Najjaran [9].  

In contrast to continuous-flow biochips, digital mi-
crofluidic biochips platform is under software-driven 
electronic control, eliminating the need for mechanical 
tubes, pumps, and valves. Moreover, because each 
droplet can be controlled independently, these “digital” 
systems also have dynamic reconfigurability, whereby 
groups of cells in a microfluidic array can be reconfi-
gured to change their functionality during the concur-
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rent execution of a set of bioassays. Thus, the advan-
tages of the digital microfluidic platform, when consi-
dered in light of real applications, are as follows [10]: 
(1) No moving parts. All operations take place between 
the two plates under direct electrical control without 
use of pumps or valves. 
(2) No channels are required. The gap is simply filled 
with liquid; channels exist only in a virtual sense and 
can be instantly reconfigured through software. 
(3) Many droplets can be independently controlled be-
cause the electrowetting force is localized at the surface. 
(4) Evaporation can be controlled or prevented with the 
oil surrounding the droplets. 
(5) No ohmic current exists. Although capacitive cur-
rents exist, the device blocks direct current, minimizing 
sample heating and electrochemical reactions. 
(6) Works with a wide variety of liquids. Most electro-
lyte solutions will work. 
(7)Near 100% utilization of sample or reagent is possi-
ble by wasting no fluid for priming channels or filling 
reservoirs. 
(8) Compatible with microscopy. Glass substrates and 
transparent indium-tin-oxide (ITO) electrodes make the 
chip compatible with observation from a microscope. 
(9) Extremely energy efficient. Using nanowatts to mi-
crowatts of power per transfer. 
(10) High speed. Droplet speeds of up to about 25 cm/s 
achieved. 
(11) Droplet-based protocols functionally are equiva-
lent to bench-scale wet chemistry. Thus, user can sim-
ple scale down, automate, and integrate established 
assays and protocols. 
(12) Conditional execution steps can be implemented 
by direct computer. 
 
2. Application of digital microfluidics 
technology in bioanalysis 

To accomplish a digital microfluidics device it re-
quires a hierarchical taxonomy. At the top level, appli-
cations are scaled to a microfluidic platform. The 
second level describes the microfluidic operations. And 
the third level describes the components to perform the 
operations. This manageable design approach is shown 
in Fig. 1.  

The top level in Fig. 1 includes biomedical applica-
tions such as electrophoretic separations, nucleic acid 
analysis, protein/enzyme analysis, immunoassays and 
bioassays, and pathogen detection. In the section below, 
these main applications will be discussed in detail. 

The second level of Fig. 1 decomposes the set of ap-
plications into common fluidic functions, such as liquid 
transport, mixing, filtering, and analysis. These com-
mon operations determine the requirements for the set 
of microfluidic hardware components in the third level, 
such as buffers, channels, reservoirs and mixers. 
 
2.1 Nucleic acid analysis 

Microfluidic technology has been successfully ap-
plied for numerous nucleic acid applications. One 
promising application is for DNA amplification by us-
ing the polymerase chain reaction (PCR). Recently, 
Daxiang Cui et al reported a new PCR system based on 
mercaptoacetic acid-modified CdTe nanocrystals 
(mQDs) and can improve the sensitivity and specificity 
of PCR within less than 1.33 mg/mL [12], but com-
pared with the conventional PCR assays, the concept of 
miniaturizing and automating PCR systems through 
digital microfluidics and advanced microfabrication 
techniques has attracted a great deal of attention be-
cause of the potential to dramatically improve the 
speed, portability, cost, sensitivity and specificity. For 
example, Zhishan Hua et al successfully developed a 
multiplexed real-time PCR system using electrowet-
ting-based digital microfluidics [13]. The reproducibili-
ty and sensitivity of the digital microfluidic PCR sys-
tem presented here compared favorably to conventional 
benchtop real-time PCR instruments but provided 
many advantages in terms of automation, cost and time 
to result. Yung, Tony K. F. et al developed a digital 
PCR-based method for the quantitative detection of the 
two common epidermal growth factor receptor muta-
tions in the plasma and tumor tissues of patients suffer-
ing from non-small cell lung cancers [14]. The sensi-
tive detection and accurate quantification of low abun-
dance EGFR mutations in tumor tissues and plasma by 
microfluidics digital PCR would be useful for predict-
ing treatment response, monitoring disease progression 
and early detection of treatment failure associated with 
acquired drug resistance. Lun FMF et al focused on 
comparing the imprecision of microfluidics digital PCR 
with that of a well-established non digital PCR assay 
for measuring male fetal DNA in maternal plasma [15]. 
They proved that microfluidics digital PCR represents 
an improvement over previous methods for quantifying 
fetal DNA in maternal plasma, enabling diagnostic and 
research applications requiring precise quantification. 
They predicted that this approach may also impact oth-
er diagnostic applications of plasma nucleic acids, e.g., 
in oncology and transplantation.  
 

 
Figure 1. Hierarchical design approach for implement-
ing numerous applications on a common set of compo-
nents [11]. 
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Another promising application is for low-cost and 
rapid-prototyping. Mohamed Abdelgawad et al devel-
oped new rapid prototyping techniques for digital mi-
crofluidics using microcontact printing and laser print-
ing on printed circuit board substrates [16]. Mohamed 
Abdelgawad et al also report two rapid prototyping 
techniques for the fabrication of DMF chips, making 
use of commercially available printed circuit board 
(PCB) substrates [17]. In the first method, actuation 
electrodes are patterned on PCB substrates by using 
photolithography, in a manner similar to what has been 
reported for other applications. This method is fast, 
inexpensive, and easy relative to conventional microfa-
brication. In the second technique, actuation electrodes 
are patterned directly onto substrates using a desktop 
laser printer; this method enabled ultra-high throughput 
fabrication. 
 
2.2 Peptide and protein analysis 

Recently, the droplet-based (digital) microfluidics 
platform has been developed to prepare and purify pro-
tein samples for measurement by matrix-assisted laser 
desorption/ionization mass spectrometry (MALDI-MS). 
Chatterjee D et al showed that a complete integrated 
sequence of protein processing steps could be per-
formed on droplet-based microfluidics platform, in-
cluding disulfide reduction, alkylation, and enzymatic 
digestion, followed by cocrystallization with a MALDI 
matrix and analysis of the sample in situ by MALDI-
MS [18]. In 2009, Jebrail M J et al reported the devel-
opment of an automated microfluidic method for ex-
tracting proteins from heterogeneous fluids by precipi-
tation [19]. As showed in Fig. 2, the structure of device 
consists of the four reagent reservoirs, the waste reser-
voir, and extraction electrode. Frames from a movie 
depicting the extraction and purification of BSA (50 
mg/mL) in 20 % TCA (precipitant) and washing with 
70/30 v/v chloroform/acetonitrile (rinse solution). In 
the final frame, the precipitated protein is redissolved 
in a droplet of 100 mM borate buffer containing 1% 
SDS.  

It is the first microfluidic method for extracting pro-
teins from heterogeneous fluids by precipitation. The 
digital microfluidics used in the method not only facili-
tates high throughput extraction and screening of pro-
teins, but also has reduced analysis time. Experiment 
results suggested great potential for the development of 
integrated, multi-step processes incorporating sample 
reduction, alkylation and digestion. Especially this 
work represented an important first step in our efforts 
to develop fully automated microfluidic methods for 
proteomic analyses. 
 
2.3 Cell analysis 

There are several new techniques to analyze the cell, 
such as new capillary electrophoresis, molecular imag-
ing [20, 21], single walled carbon nanotubes [22] and 

microfluidic chip. Conventional flow cytometers which 
are routinely utilized for analyzing the physical and 
chemical properties of biological cells require a high 
amount of reagent for analysis and furthermore are 
both bulky and expensive and require trained personnel 
for operation and maintenance. In 2008, Barbulovic-
Nad I et al introduced a new method for implementing 
cell-based assays [23]. This method is based on digital 
microfluidics which is used to actuate nanolitre drop-
lets of reagents and cells on a planar array of electrodes. 
Experiments demonstrated that this method is advanta-
geous for cell-based assays because of automated ma-
nipulation of multiple reagents in addition to reduced 
reagent and analysis time. In 2010, Jiajia Ji et al re-
views advances of nanotechnology in the stem cells 
research, including various micro/nanofabrication 
technologies, microgrooves technology and so on [24].  

To circumvent the complexity of the detection sys-
tems of microfluidic devices, Hartley et al recently re-
ported on a CMOS optical active pixel sensor (APS) 
for near-field detection and counting of microscopic 
particles [25]. To further enhance the digital cytometric 
capabilities of the original sensor, Yahya Hosseini et al 
modified and utilized a dual APS-array scheme to faci-
litate the determination of the velocity and size of par-
ticles flowing in microfluidic channels [26]. The expe-
rimental results suggested that the dual-array-APS ar-
rangement offered a simplistic yet effective strategy for 
size measurements of microscopic particles in micro-
fluidic environments. 
 

 
Figure 2. Digital microfluidic device and method for 
protein precipitation [19] .  
 
2.4 Drug analysis and delivery 

Recent advances in molecular biology and genetic 
research have made possible the creation of more po-
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werful and effective cancer therapeutics, bringing 
about the realization of the century-old concept of 
‘‘magic bullets’’ that can carry therapeutic drugs to 
target sites with high specificity [27]. In 2009, Kanaka 
Hettiarachchi and Abraham P. Lee reported the ability 
to generate functionalized multilayer gas lipospheres 
with precisely controlled size and drug carrying capaci-
ty [28]. Through their previous work, they demonstrat-
ed that the application of multilayer lipospheres as drug 
delivery agents, although those vehicles are produced 
with techniques that resulted in size and loading incon-
sistency. 

Tatiana N Laremore et al reviewed the recent 
progress and applications in glycosaminoglycan and 
heparin research [29]. They showed that digital micro-
fluidics may provide environments that more accurate-
ly mimic biological synthesis and can be manipulated 
leading to new biosynthetic and biological screening 
designs. They predicted that the future should bring an 
improved understanding of Golgi-based heparin/HS 
biosynthesis, its control and scale-up, and the rapid, 
microscale analysis of heparin/HS leading to the pro-
duction of bioengineered anticoagulant heparin and a 
novel array of designer heparin-based therapeutics.  
 
2.5 Immunization analysis 

Immunoassays and enzyme activity assays currently 
used in newborn screening have been translated to a 
disposable microchip programmed to dispense, trans-
port, mix, wash, and incubate individual microdroplets 
from specimens, including dried blood spot extracts, 
and reagents all under software control. There are 
many characteristics which make digital microfluidic 
technology attractive to newborn screening, such as 
low volumes, direct translation of existing assays, au-
tomation, portability, inexpensive manufacturing, sam-
ple compatibility, scalability and multifunctionality. 
David S. Millington et al described a cost-effective 
new platform that reduced the time to result reporting 
and could perform multiplexing assays requiring dif-
ferent platforms [30]. Chun-Che Lin et al have a brief 
introduction to microfluidic immunoassays and showed 
the critical issues which are important for microfluidic 
immunoassays and should be addressed properly [31]. 
The critical issues are as follows:  
(1) Mass Production. For commercial and disposability 
considerations, Materials with similar properties and 
capabilities for mass production by techniques, such as 
injection molding and embossing are in great demand 
for practical applications.  
(2) Multiplicity. The multiplexed assay will continue to 
be the dominant method for commercialization of these 
microfluidic immunoassays. 
(3) Surface Modification and Immobilization. Nonspe-
cific adsorption or binding to molecules rather than 
analytes is a key concern in immunoassays because it 
may greatly impair the sensitivity and selectivity. 

(4) Purification and Concentration. Due to the com-
plexity and the low trace of analytes in biosamples, 
purification and concentration steps are often required 
in microfluidic immunoassays. 
(5) Detection. Developing and integrating miniaturized, 
compact, portable, and inexpensive detection systems 
with an acceptable sensitivity onto microfluidic devices 
are still in great demand. 
(6) Integration, Packaging, and Cost down issues. The 
ultimate goal for practical commercialization is to de-
velop fully integrated, well packaged, disposable, and 
cheap microfluidic systems for immunoassays. 
(7) Storage of Reagents. This is one important issue in 
portable devices because most bioreagents are not dur-
able under room temperature and some of them require 
special environments for storage. 
 
3. The prospect of digital microfluidics 
technology 

Like many new technologies, DMF has obviously 
shortcuts in the previous years. Most digital microflui-
dic platforms built to date are highly specialized and 
designed to fulfill the requirements of a single particu-
lar application within a limited set of operations. The 
detection techniques should be able to circumvent the 
limitations of hydrophobic surfaces and exploit the ad-
vantages of the array format, high droplet transport 
speeds and rapid mixing schemes. 

As the applications discussed in this article, we pro-
pose that the ever-expanding community of DMF re-
searchers (including academics, ALL, and others) will 
solve some of the mechanistic and practical problems 
that remain, such that DMF will become a widely prac-
ticed technique in the next decade. 
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