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Abstract

In this work, we propose an original method, the Random matrix theory (RMT)-based hierarchical clustering method, to identify functional gene
networks of diffuse large B-cell Lymphoma (DLBCL) gene co-expression networks. Comparing topological approach, the RMT-based hierarchical
clustering method is effective in representing not only the strong correlations between genes inside the modules (the modularity and independency
of networks), but also the weak correlations between different modules (the hierarchy of networks). We show that missing expression values among
microarray dataset should not be neglected, and different imputation methods result in different performances. We suggest LLS to estimate missing
values for better performance in accuracy and stability. Based on the RMT, the random noises are separated from DLBCL gene expression data. We
use normalized root mean squared error (NRMSE) ratio method to identify a transition zone of NNSDs, and for DLBCL networks it is [0.71, 0.84].
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Introduction

Diffuse large B-cell lymphoma (DLBCL), are the
most common subtype of non-Hodgkin’s lymphoma,
composing 32% of lymphoma patients all over the world.
There being evident heterogeneity in immunological
phenotype, genetic mutations, and gene expression, the
classification and prognosis of DLBCL are still debated.
Recent technical and analytical advances make it practical
to quantitate the expression of thousands of DLBCL
genes in parallel using Lymphochip microarrays [1]. A
genome-wide approach is made possible to analyze the
DLBCL networks, classify subgroups, and contribute to
the clinical diagnosis, therapy and prognosis.

Many approaches have been applied to identify
functional modules based on DNA microarray, such
as Boolean network methods, differential equation-
based network methods [2], Bayesian network method,
clustering methods [3], and co-expression network
methods [4,5]. The co-expression network technique
is widely adopted because it can manage the nature of
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microarray datasets: typical noise and high dimension.
However, the co-expression network method relies
on arbitrarily assigned thresholds for link cutoff,
which introduces subjectivity into network structure
and topology. On the other hand, the limited number
of samples in microarray experiment may introduce
significant “measurement noise” that compromises the
accuracy of the underlying correlations.

The RMT was firstly proposed by Wigner and Dyson
in the 1960s for studying the spectrum of complex nuclei
[6]. It’s a powerful approach for identifying and modeling
phase transitions and dynamics associated with disorder
and noises in statistical physics and materials science,
such as spectra of large atoms, spectra of conductance peak
[7], metal insulator transitions in disorder systems [8],
spectra of quasi-periodic systems [9, 10], chaotic systems
[11], complex networks [12, 13], gene coexpression
network[14], protein dynamics[15], multivariate time
series such as human EEG data [16], and the stock market
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[17]. Luo et al. used RMT-based topological approach
in many biological networks, determined the transition
threshold of NNSDs by Chi-square test, and showed
that: NNSDs of the adjacent matrix of protein interaction
network and metabolic network, as well as that of the
correlation matrix of yeast gene network follow the
universal predictions of RMT [18, 19]; on the other hand,
NNSDs of the correlation matrix of various complex
biological networks follow the universal description of
RMT [20]. They indicated that RMT-based approach is
applicable to biological networks to separate system-
specific properties from random noises, tackling the
problem in removing noises. However, the topological
approach is limited to strong correlations between
genes inside the modules without the weak correlations
between different modules. Besides, the Chi-square test is
subjective due to artificial confidence level.

Microarray data often contain missing values due
to various reasons: insufficient resolution, image
corruption, dust or scratches on the slides or experimental
errors during the laboratory process. Missing value
estimation becomes an important preprocessing step
for microarray data analysis, since many statistical
analysis algorithms either require complete datasets or
are subject to significant performance degradations due
to missing values [21]. A series of microarray missing
value estimation techniques have been developed,
including K-nearest neighbor (KNN) [22], singular value
decomposition (SVD) [22], least square (LSimpute) [23],
Bayesian principle component analysis (BPCA) [24],
local least square (LLS) [25], collateral missing value
estimation (CMVE) [26], gaussian mixture clustering
(GMCimpute) [27], integrative missing value estimation
method (iMISS) [28], and GOimpute utilizing external
information from Gene Ontology [29]. Test datasets are
selected from public microarray datasets by removing
missing values, to compare the performance of different
estimations statistically by computing NRMSE. Whereas,
missing value imputations have not been applied to gene
expression analysis yet. Luo et al. demonstrated that
whether using KNN to impute missing values in yeast
Saccharomyces cerevisiae microarray dataset or not don’t
affect the eigenvalue fluctuations. So they only used the
experiments both genes having values to calculate the
correlation, which will cursorily neglect some important
genes regulating mitotic cycle. Thus, it’s essential to
apply appropriate imputation to gene expression analysis
practically, to reduce the impact that imputation has on
downstream analysis.

In this report, we propose a novel approach--RMT-
based hierarchical clustering method--to identify the
functional modules of DLBCL gene networks. During the
preprocessing, we use LLS to estimate the missing values
in DLBCL microarray dataset. The universal predictions
of RMT are applied to separate the random noises from
gene networks gradually. We employ NRMSE ratio
method to determine a transition zone of NNSDs. At
the transition completing point we retain characteristic
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genes to construct topological graph and hierarchical
dendrogram, and investigate the distinctions between
modules and clusters.

2. Methods

We analyze DLBCL gene expressions of 128
Lymphochip microarrays, made up of 4026 cDNA clones
and 96 normal and malignant lymphocyte samples [30].

We use LLS imputation method based on the least
squares formulation to estimate missing values in DLBCL
gene expressions. LLS is a local imputation algorithm
which exploit the dominant local similarity structure
of the dataset. L,-norm is used as similarity measure,
and after regression analyses based on the least squares
formulation missing values are estimated by a linear
combination of the similar genes [25]. K-nearest neighbor
genes are selected using heuristic algorithm, according to
structures of different datasets.

The standard Pearson correlation coefficients are
computed to construct the Pearson correlation matrix. The
Pearson coefficient between gene and gene is:

_i N[ g —M 8 jk _Mg,- (1
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whereMg. , Mg are the average expression levels of
. .
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gene g; and g;, G, , O are the standard deviations, and N
. i %y

g
is the total number of samples. c(g;, g;) ranges from -1 to
1. Its absolute value signifies the correlations between
two genes, with 1 corresponding to absolutely positive
correlations, -1 meaning completely negative correlations,
and 0 referring to no relationship.

The RMT focuses on the statistical properties of
eigenvalue spacing between consecutive eigenvalues.
From RMT [10], for real and symmetrical random
matrices, the eigenvalue fluctuations follow two universal
laws depending on the correlativity of eigenvalues. Strong
correlation of eigenvalues is described by the Gaussian
orthogonal ensemble (GOE) statistics. On the other hand,
eigenvalue spacing distribution follows Poisson statistics
if there is no correlation between eigenvalues.

In general, the density of eigenvalues of a matrix varies
with its eigenvalue E; (i=1,2,3, . . .N), where N is the order
of the matrix. Thereby eigenvalue spacing distribution is
a function of E; and thus system dependent. To observe
universal eigenvalue fluctuations of different types of
matrices, one can replace E; by the unfolded spectrum
e, where =N, (E;) and N,, is the smoothed integrated
density of eigenvalues obtained. With the unfolded
eigenvalues, one calculates NNSD of eigenvalues P(s),
defined as the probability density of unfolded eigenvalue
spacing s=e,,,—¢;. The eigenvalue fluctuation is generally
obtained from NNSD of the eigenvalues. From RMT [10],
P(s) of the GOE statistics closely follows the Wigner-

Dyson distribution:

Nano Biomed. Eng. 2011, 3(1), 57-65



Article

1 —s®
PGOE(S)NE”SQXP( 4 ) 2)

In the case of Poisson statistics, P(s) is given by the
Poisson distribution:

PPoisson (S) = eXp(—S) (3)
Setting factor de 0,1) > we substitute the matrix

elements smaller than q with 0, and retain the bigger
ones. Here, 0 denotes weaker correlations between genes,
and nonzero elements denote stronger correlations. We
cast off the rows with 1 as diagonal element and 0 as all
the other off-diagonal elements--corresponding to genes
having only weak correlations between other genes.
And we retain the rows with 1 as diagonal element and
nonzero values as off-diagonal elements--representing
genes having strong correlations between others. The
retained genes are called characteristically expressed
genes playing important roles in biology. Then, the
characteristic genes are used to construct a new gene
expression matrix, together with Pearson correlation
matrix and NNSDs. As q increases, NNSDs exhibit a
transition from Wigner-Dyson distribution to Poisson
distribution [18, 19, 20].

NRMSE method is widely used to observe the
deviation sensitivity between measured values and
standard values in engineering survey. As NRMSE value
is sensitive to tiny errors in a set of measures, reflecting
the measuring precision well and truly. NRMSE is
counted by:

NRMSE — \/Mean(P - IDStandard )2 (4)
SD (IDStandard)

of which P is the NNSDs, P, 4.« Stands for the standard
distribution functions [22]. When NNSDs approximate
the standard distribution, NRMSE approaches its
minimum value 0.0; when NNSDs deviate from the
standard distribution gradually, NRMSE increases; at the
point q when the deviations between NNSDs and two
standard distributions are the same, transition threshold q,
is found.

In order to reduce further the impact of random noises
on networks structures, we compute NRMSE ratio by
dividing NRMSE_Wigner-Dyson by NRMSE_Poisson.
At the maximum ratio, NNSDs deviate far from Wigner-
Dyson distribution, and approximate Poisson distribution.
We define the transition completing point q,,, where,
there are most system-intrinsic strong correlations
between genes in networks structures, with few weak
correlations due to random noises. At q,,, random noises
can be separated fully, and the retained characteristically
expressed genes can construct the factual networks
structures.

Then topological graph is portrayed based on
characteristic genes by Biolayout [31]. Dendrogram
is constructed using hierarchical clustering algorithm
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[32] by Cluster3.0 and Java TreeView. We choose
unsupervised Two Way Clustering; for the clustering
method we choose the Average linkage; and for Similarity
Metric we use Pearson correlation coefficient. This
algorithm sorts through all the data to find the pairs of
genes that behave most similarly in each experiment to
form clusters of apparently coregulated genes.

3. Results and Discussions

3.1 Determining q,, by RMT

In preprocessing, we use LLS imputation method to
estimate missing values in DLBCL gene expressions.
There are 19667 missing expressions in this dataset,
accounting for 5.09%. The following heuristic algorithm
for estimating k-nearest neighbors is firstly performed.
Several k-values are tested as nearest neighbors to
estimate the missing values, and NRMSEs are calculated
to compare the performance. An optimal value shows
the best performance using known elements of gene
expression matrix: k=140. Here, the square structure
of evaluating matrix is the same to the least squares
structure, namely, the number of rows is larger than that
of columns, and NRMSE curve drops and stabilizes. The
missing value is then estimated as a linear combination of
the k similar genes in the least squares formulations.

LLS imputation method based on the least squares
formulation exploits local similarity structures in the
microarray data as well as least squares optimization
process. LLS takes into account of the characteristic of
the given data matrix, and an optimal k-value is selected
using heuristic algorithm to gain the best performance.
As the only necessary parameter k is automatically
determined by the procedures, LLS can be classified
as non-parametric missing value estimation methods.
Otherwise, LLS shows good performance when the
optimal k-value ranges in a wide area. Kim et al. studied
Spellman time series cycle-cycle dataset and non-time
series response to environmental changes dataset in yeast
Saccharomyces cerevisiae genes, and indicated that,
LLS shows competitive results compared with other
imputation methods (such as KNN) on various datasets
and percentages of missing values in the data. In a word,
LLS is a robust and accurate missing value estimation
method, and can reduce the effect of estimations on
downstream analysis.

After estimating the missing values in the gene
expression matrix, we compute Pearson correlation
coefficients to construct the real and symmetrical co-
expression matrix, and the co-expression networks model.

Fig. 1 shows the fluctuations of NNSDs with
eigenvalue spacing s. We can see from Fig. 1 that NNSDs
follow different laws as q changes. NNSDs gradually
transit from Wigner-Dyson distribution to Poisson
distribution when q increases.

We apply NRMSE ratio method to determine the
transition completing point of NNSDs. NRMSE ratio
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Fig. 1. NNSDs curves of DLBCL gene expression dataset. Red li

ne is Wigner-Dyson distribution and blue line is Poisson distribution.
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Fig. 2. NRMSE fitting ratio curve of NNSDs of DLBCL.

curve of NRMSE Wigner-Dyson versus NRMSE
Poisson is shown in Fig. 2. At the transition threshold
q.=0.71 ratio value is 1.0, and NNSDs deviate equally
from two standard distributions. Binary polynomial fitting
is performed on the artificially interceptive points bigger
than q.=0.71. The transition completing point q,,=0.84
is observed at the vertex of fitting ratio curve. Here,
NRMSE Wigner-Dyson is bigger than NRMSE Poisson,
which means NNSDs deviate far from Wigner-Dyson
distribution, and approach Poisson distribution.

Weak interactions fabricated by random noises are
separated from intrinsic strong interactions between
genes, and then a new gene expression matrix is obtained
reflecting the factual structures of DLBCL gene networks.

60 Ocuost

2383 characteristically expressed genes are retained
at q.=0.71, including all the strong correlations and
most weak correlations between genes as well. While
at q,,=0.84, 1230 characteristic genes are reserved,

composed of most strong correlations and few weak
correlations.

However, microarray datasets are of high noises and
biological processes are of complexity, which make it
impossible to remove noises from interactions between
genes and from networks structures completely. In our
findings a transition zone of [0.71, 0.84] is defined
based on two transition points q. and q,, for DLBCL
dataset. Moreover, any point inside the zone can work
as a criterion for factor q to remove noises, select
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characteristic genes, and construct gene networks.
The higher q value is, the more removed noises are.
Therefore, compared with q,=0.71, random noises are
removed fully at q,=0.84. Although some correct links
are lost, the retained characteristic genes can show most
of the intrinsic interactions between genes, and construct
the true structures without random noises. A solution to
resolve the inconsistency is called soft thresholding, to
identify a rational transition point.

3.2 Constructing topological graph

Our results indicate that RMT is applicable to DLBCL
gene networks, and NNSDs transit from Wigner-Dyson
distribution to Poisson distribution. Meantime, networks
structure transits from rich-correlation systems to poor-
correlation systems [18, 19]. In order to observe the
changes of networks structures, we portray the topological
graph using Biolayout at different q value. We find most
nodes gather together as a big module for mix of strong
and weak correlations at small q value. As q increases
gradually, namely spurious links due to random noises
are removed gradually from true links, some nodes break
away from the biggest module to form small insulated
modules. When q is close to 1, topological graph lay out
insulated modules composed of strongly correlated genes
as random noises are separated fully.

Topological graphs are shown in Fig. 3. In Fig. 3(a)
(at transition threshold q.=0.71), most nodes get together
for a big module, with several disperse small modules
made up of a few nodes. While in Fig. 3(b) (at transition
completing point q,,=0.84), all modules composed of 1230
nodes are isolated clearly. Modules with less than 5 nodes
are portrayed dark green and others with no less than 5
nodes are colorized. Nodes are connected through edges
for strong interactions inside the modules. While, there
are no edges between modules. Thus, the modularity and
independency of networks are represented by topological
graph. In addition, q,,=0.84 is demonstrated to be a sound
transition point for DLBCL gene networks.

http://nanobe.org
3.3 Constructing hierarchical dendrogram

Hierarchical modularity of networks indicates that
large modules can be divided into small sub-modules;
inside the same module genes are connected directly for
strong interactions, and indirectly for weak interactions;
genes from different modules are connected indirectly
or unconnected for weak correlations; modules are
connected for the same or similar functions. Topological
graph exhibits the modularity and independency of
networks but hierarchical modularity.

To analyze the hierarchical modularity of DLBCL
networks, we construct hierarchical dendrogram of 1230
characteristic genes at q,,=0.84 using clustering algorithm.
Genes with similar functions are gathered together in a
cluster. Clusters with specific functions in hierarchical
dendrogram correspond to certain modules in topological
graph. 14 modules and clusters are consistent in gene
members, which are gathered closely, representing the
modularity and independency of DLBCL networks.
Another 8 modules and clusters are common in gene
members, but different in that: clusters are shown as
integrated branches, composed of closely gathered genes,
while modules are collections of isolated small modules
without edges through modules.

Alizadeh et al. [30] investigated DLBCL gene
expression dataset using Two Way Clustering algorithm.
They didn’t estimate the missing values in dataset, didn’t
remove the random noises to select characteristic genes,
and implemented clustering on expressions of all clones
in every sample (4026*96). Four clusters were studied in
detail: Proliferation, Germinal centre B, Lymph node and
T cell cluster [30].

As shown in Fig. 4(a), the branch marked dark is
Lymph node cluster of 29 genes, including several
signature featured genes Alizadeh et al. [30] spoke of:
CSF-1 (macrophage-specific colony-stimulating factor),
NK4 (natural killer transcript 4) possessing anti-tumor,
anti-virus infection and immunoregulation effects.
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Fig. 3. Topological graph for DLBCL gene networks.
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In addition, genes involved in the remodeling of the
extracellular matrix are contained: MMP2 and MMP9 (the
members of matrix metalloproteinases, which effectively
decompose the main component of basilar membrane
IV -collagen proteins), as well as TIMP-3 (a member of
tissue inhibitors of metalloproteinase, which regulates
the decomposition of extracellular matrix proteins) [34].
Topological graph of Lymph node module is shown in
Fig. 4(b) with 28 genes. Topological graph agrees well
with dendrogram in gene members, signifying modularity
and independency of networks.

On the other hand, different clusters are connected
for similar functions in dendrogram representing the
hierarchical modularity of gene networks and weak
correlations between clusters; whereas topological
graph can not manifest the properties. MHC (major
histocompatibility complex) cluster is magnified in Fig.
4(c), composed of tightly linked genes. Sub-cluster
marked light grey is composed of genes encoding
MHC-I, while sub-cluster marked dark grey is composed
of genes encoding MHC-11. They are linked at the root of
the branch, inducing and regulating the immune response
together [35]. MHC cluster is a case in point to manifest
the hierarchical modularity and weak correlations between
different clusters. Topological graph of MHC module is
divided into 5 insulated sub-modules in Fig. 4(d). The
biggest two sub-modules are made up of mixed genes
encoding MHC-1 and MHC-11. And 5 sub-modules are

“RANTES=chemokine
“RAMTES=chemokine

(Thy:

= *rathepsin B
—= “rathepsin B
I “rathepsin B

i 2 ieuraibr min 2 {bilateral acoustic neuromaj=schwannomin=C&1)

isolated without linked edges. Thus, weak correlations
between different modules can not be represented by
topological graph.

To demonstrate the rationality of transition zone
in Section 3.1, we construct hierarchical dendrogram
at q., q,, and the outer point, and analyze the gene
members of dendrograms respectively. Fig. 5(a) shows
the magnified dendrogram of Proliferation cluster of 85
genes at ¢,,=0.84. Consistent with Alizadeh et al. [30], the
signature featured genes include cell-cycle control genes
(CDC2,cdk2,CIP2/Cdil/KAP1,Cyclin A,Cyclin B1,p16
and p55CDC), cell-cycle checkpoint genes BUB1, DNA
synthesis and replication gene RADS54, and the gene
Ki67 [33], gauging the ’proliferation index’ of a tumor
biopsy. Fig. 5(b) shows dendrogram of Proliferation
cluster of 114 genes at q.=0.71. All genes regulating cell-
cycle in Fig. 5(a) are included, as signed in Fig. 5(a, b).
We construct dendrograms beside the two endpoints
of transition zone. At q=0.70, the dendrogram of
Proliferation cluster contains 119 genes. 3 newly joining
genes are unknown genes compared with signature
featured genes at q.=0.71. At q=0.85, the dendrogram
includes 72 signature featured genes. Compared with
J.,=0.84, some important genes regulating cell-cycle
are lost: two genes encoding Thymidine kinase 1, G1/
S phase transition regulatory gene CIP2/Cdil/KAPI,
gene encoding cell-cycle checkpoint kinase CHK1 and
gene encoding cyclin-dependent kinase cdk2. At the
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Fig. 5. Structures of Proliferation cluster. (a) dendrogram at q,,=0.84, (b) dendrogram at q.=0.71, (c) topological graph at g,,=0.84.

lower point, it is random noises that make unconcerned
genes falsely connect with genes inside the cluster. At
the higher point, true links between genes are weakened
or even removed while removing random noises. Again,
the topological graph of Proliferation module shown in
Fig. 5(c) contains 4 separate sub-modules, not showing
the hierarchical modularity. We conclude that, the
dendrograms constructed at q points outside the transition
zone can not reveal the intrinsic correlations between

Nano Biomed. Eng. 2011, 3(1), 57-65

genes. Namely, the transition zone [0.71, 0.84] is the
optimal result using NRMSE ratio method.

5. Conclusions

We propose a novel method to identify functional
modules of gene networks taking DLBCL microarray
dataset as an example: RMT-based hierarchical clustering
method. As missing values in microarray dataset influence
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the results of classifying algorithms, it is required to
estimate the missing values in preprocessing. Meantime,
different networks structures are obtained using
different estimations. We find LLS shows competitive
performance compared with other imputation methods.
In our preprocessing, we apply LLS to estimate the
missing values in DLBCL dataset to reduce the impact of
estimation on classifications.

Random noises are removed based on the universal
predictions of RMT, and transitions of NNSDs and
networks structures are observed. According to soft
thresholding, a transition zone [0.71,0.84] is determined
using NRMSE ratio method, of which the rationality
is demonstrated by structures analyses of Proliferation
cluster. At transition completing point q,=0.84, 1230
characteristic genes are retained with which we construct
the topological graph and the hierarchical dendrogram
of DLBCL networks. After comparison the difference
between the topological modules and the hierarchical
clusters of Lymph node and MHC cluster, we conclude
that RMT-based hierarchical clustering method can
not only represent the modularity and independency of
networks based on the strong correlations between genes
inside the modules, but also represent the hierarchical
modularity of networks based on the weak correlations
between different modules. The method is effective in
identifying functional modules of gene networks.
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