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Abstract

In this work, we propose an original method, the Random matrix theory (RMT)-based hierarchical clustering method, to identify functional gene 
networks of diffuse large B-cell Lymphoma (DLBCL) gene co-expression networks. Comparing topological approach, the RMT-based hierarchical 
clustering method is effective in representing not only the strong correlations between genes inside the modules (the modularity and independency 
of networks), but also the weak correlations between different modules (the hierarchy of networks). We show that missing expression values among 
microarray dataset should not be neglected, and different imputation methods result in different performances. We suggest LLS to estimate missing 
values for better performance in accuracy and stability. Based on the RMT, the random noises are separated from DLBCL gene expression data. We 
use normalized root mean squared error (NRMSE) ratio method to identify a transition zone of NNSDs, and for DLBCL networks it is [0.71, 0.84].
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Introduction

     Diffuse large B-cell lymphoma (DLBCL), are the 
most common subtype of non-Hodgkin’s lymphoma, 
composing 32% of lymphoma patients all over the world. 
There being evident heterogeneity in immunological 
phenotype, genetic mutations, and gene expression, the 
classification and prognosis of DLBCL are still debated. 
Recent technical and analytical advances make it practical 
to quantitate the expression of thousands of DLBCL 
genes in parallel using Lymphochip microarrays [1]. A 
genome-wide approach is made possible to analyze the 
DLBCL networks, classify subgroups, and contribute to 
the clinical diagnosis, therapy and prognosis.
    Many approaches have been applied to identify 
functional modules based on DNA microarray, such 
as Boolean network methods, differential equation-
based network methods [2], Bayesian network method, 
clustering methods [3], and co-expression network 
methods [4,5]. The co-expression network technique 
is widely adopted because it can manage the nature of 

microarray datasets: typical noise and high dimension. 
However, the co-expression network method relies 
on arbitrarily assigned thresholds for link cutoff, 
which introduces subjectivity into network structure 
and topology. On the other hand, the limited number 
of samples in microarray experiment may introduce 
significant “measurement noise” that compromises the 
accuracy of the underlying correlations.
     The RMT was firstly proposed by Wigner and Dyson 
in the 1960s for studying the spectrum of complex nuclei 
[6]. It’s a powerful approach for identifying and modeling 
phase transitions and dynamics associated with disorder 
and noises in statistical physics and materials science, 
such as spectra of large atoms, spectra of conductance peak 
[7], metal insulator transitions in disorder systems [8], 
spectra of quasi-periodic systems [9, 10], chaotic systems 
[11], complex networks [12, 13], gene coexpression 
network[14], protein dynamics[15], multivariate time 
series such as human EEG data [16], and the stock market 
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[17]. Luo et al. used RMT-based topological approach 
in many biological networks, determined the transition 
threshold of NNSDs by Chi-square test, and showed 
that: NNSDs of the adjacent matrix of protein interaction 
network and metabolic network, as well as that of the 
correlation matrix of yeast gene network follow the 
universal predictions of RMT [18, 19]; on the other hand, 
NNSDs of the correlation matrix of various complex 
biological networks follow the universal description of 
RMT [20]. They indicated that RMT-based approach is 
applicable to biological networks to separate system-
specific properties from random noises, tackling the 
problem in removing noises. However, the topological 
approach is limited to strong correlations between 
genes inside the modules without the weak correlations 
between different modules. Besides, the Chi-square test is 
subjective due to artificial confidence level.
    Microarray data often contain missing values due 
to various reasons: insufficient resolution, image 
corruption, dust or scratches on the slides or experimental 
errors during the laboratory process. Missing value 
estimation becomes an important preprocessing step 
for microarray data analysis, since many statistical 
analysis algorithms either require complete datasets or 
are subject to significant performance degradations due 
to missing values [21]. A series of microarray missing 
value estimation techniques have been developed, 
including K-nearest neighbor (KNN) [22], singular value 
decomposition (SVD) [22], least square (LSimpute) [23], 
Bayesian principle component analysis (BPCA) [24], 
local least square (LLS) [25], collateral missing value 
estimation (CMVE) [26], gaussian mixture clustering 
(GMCimpute) [27], integrative missing value estimation 
method (iMISS) [28], and GOimpute utilizing external 
information from Gene Ontology [29]. Test datasets are 
selected from public microarray datasets by removing 
missing values, to compare the performance of different 
estimations statistically by computing NRMSE. Whereas, 
missing value imputations have not been applied to gene 
expression analysis yet. Luo et al. demonstrated that 
whether using KNN to impute missing values in yeast 
Saccharomyces cerevisiae microarray dataset or not don’t 
affect the eigenvalue fluctuations. So they only used the 
experiments both genes having values to calculate the 
correlation, which will cursorily neglect some important 
genes regulating mitotic cycle. Thus, it’s essential to 
apply appropriate imputation to gene expression analysis 
practically, to reduce the impact that imputation has on 
downstream analysis.
    In this report, we propose a novel approach--RMT-
based hierarchical clustering method--to identify the 
functional modules of DLBCL gene networks. During the 
preprocessing, we use LLS to estimate the missing values 
in DLBCL microarray dataset. The universal predictions 
of RMT are applied to separate the random noises from 
gene networks gradually. We employ NRMSE ratio 
method to determine a transition zone of NNSDs. At 
the transition completing point we retain characteristic 

genes to construct topological graph and hierarchical 
dendrogram, and investigate the distinctions between 
modules and clusters.

2. Methods

    We analyze DLBCL gene expressions of 128 
Lymphochip microarrays, made up of 4026 cDNA clones 
and 96 normal and malignant lymphocyte samples [30]. 
    We use LLS imputation method based on the least 
squares formulation to estimate missing values in DLBCL 
gene expressions. LLS is a local imputation algorithm 
which exploit the dominant local similarity structure 
of the dataset. L2-norm is used as similarity measure, 
and after regression analyses based on the least squares 
formulation missing values are estimated by a linear 
combination of the similar genes [25]. K-nearest neighbor 
genes are selected using heuristic algorithm, according to 
structures of different datasets. 
    The standard Pearson correlation coefficients are 
computed to construct the Pearson correlation matrix. The 
Pearson coefficient between gene and gene  is: 
                            
                                                                                       (1)

whereMgi 
, Mgj

 are the average expression levels of 
gene gi and gj , σgi 

, σgj
are the standard deviations, and N

is the total number of samples. c(gi, gj) ranges from -1 to 
1. Its absolute value signifies the correlations between 
two genes, with 1 corresponding to absolutely positive 
correlations, -1 meaning completely negative correlations, 
and 0 referring to no relationship.
     The RMT focuses on the statistical properties of 
eigenvalue spacing between consecutive eigenvalues. 
From RMT [10], for real and symmetrical random 
matrices, the eigenvalue fluctuations follow two universal 
laws depending on the correlativity of eigenvalues. Strong 
correlation of eigenvalues is described by the Gaussian 
orthogonal ensemble (GOE) statistics. On the other hand, 
eigenvalue spacing distribution follows Poisson statistics 
if there is no correlation between eigenvalues. 
    In general, the density of eigenvalues of a matrix varies 
with its eigenvalue Ei (i=1,2,3, . . .N), where N is the order 
of the matrix. Thereby eigenvalue spacing distribution is 
a function of Ei and thus system dependent. To observe 
universal eigenvalue fluctuations of different types of 
matrices, one can replace Ei by the unfolded spectrum 
ei, where ei=Nav (Ei) and Nav is the smoothed integrated 
density of eigenvalues obtained. With the unfolded 
eigenvalues, one calculates NNSD of eigenvalues P(s), 
defined as the probability density of unfolded eigenvalue 
spacing s=ei+1−ei. The eigenvalue fluctuation is generally 
obtained from NNSD of the eigenvalues. From RMT [10], 
P(s) of the GOE statistics closely follows the Wigner-
Dyson distribution: 
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                                                                                        (2)

In the case of Poisson statistics, P(s) is given by the 
Poisson distribution:
                                                                                        
                                                                                        (3)
    Setting factor q (0,1)∈  , we substitute the matrix 
elements smaller than q with 0, and retain the bigger 
ones. Here, 0 denotes weaker correlations between genes, 
and nonzero elements denote stronger correlations. We 
cast off the rows with 1 as diagonal element and 0 as all 
the other off-diagonal elements--corresponding to genes 
having only weak correlations between other genes. 
And we retain the rows with 1 as diagonal element and 
nonzero values as off-diagonal elements--representing 
genes having strong correlations between others. The 
retained genes are called characteristically expressed 
genes playing important roles in biology. Then, the 
characteristic genes are used to construct a new gene 
expression matrix, together with Pearson correlation 
matrix and NNSDs. As q increases, NNSDs exhibit a 
transition from Wigner-Dyson distribution to Poisson 
distribution [18, 19, 20].
     NRMSE method is widely used to observe the 
deviation sensitivity between measured values and 
standard values in engineering survey. As NRMSE value 
is sensitive to tiny errors in a set of measures, reflecting 
the measuring precision well and truly. NRMSE is 
counted by:
                                    
                                                                                        (4)

of which P is the NNSDs, Pstandard  stands for the standard 
distribution functions [22]. When NNSDs approximate 
the standard distribution, NRMSE approaches its 
minimum value 0.0; when NNSDs deviate from the 
standard distribution gradually, NRMSE increases; at the 
point q when the deviations between NNSDs and two 
standard distributions are the same, transition threshold qc 
is found.
    In order to reduce further the impact of random noises 
on networks structures, we compute NRMSE ratio by 
dividing NRMSE_Wigner-Dyson by NRMSE_Poisson. 
At the maximum ratio, NNSDs deviate far from Wigner-
Dyson distribution, and approximate Poisson distribution. 
We define the transition completing point qm, where, 
there are most system-intrinsic strong correlations 
between genes in networks structures, with few weak 
correlations due to random noises. At qm, random noises 
can be separated fully, and the retained characteristically 
expressed genes can construct the factual networks 
structures.
    Then topological graph is portrayed based on 
characteristic genes by Biolayout [31]. Dendrogram 
is constructed using hierarchical clustering algorithm 

[32] by Cluster3.0 and Java TreeView. We choose 
unsupervised Two Way Clustering; for the clustering 
method we choose the Average linkage; and for Similarity 
Metric we use Pearson correlation coefficient. This 
algorithm sorts through all the data to find the pairs of 
genes that behave most similarly in each experiment to 
form clusters of apparently coregulated genes. 

3. Results and Discussions

3.1 Determining qm by RMT

    In preprocessing, we use LLS imputation method to 
estimate missing values in DLBCL gene expressions. 
There are 19667 missing expressions in this dataset, 
accounting for 5.09%. The following heuristic algorithm 
for estimating k-nearest neighbors is firstly performed. 
Several k-values are tested as nearest neighbors to 
estimate the missing values, and NRMSEs are calculated 
to compare the performance. An optimal value shows 
the best performance using known elements of gene 
expression matrix: k=140. Here, the square structure 
of evaluating matrix is the same to the least squares 
structure, namely, the number of rows is larger than that 
of columns, and NRMSE curve drops and stabilizes. The 
missing value is then estimated as a linear combination of 
the k similar genes in the least squares formulations.
    LLS imputation method based on the least squares 
formulation exploits local similarity structures in the 
microarray data as well as least squares optimization 
process. LLS takes into account of the characteristic of 
the given data matrix, and an optimal k-value is selected 
using heuristic algorithm to gain the best performance. 
As the only necessary parameter k is automatically 
determined by the procedures, LLS can be classified 
as non-parametric missing value estimation methods. 
Otherwise, LLS shows good performance when the 
optimal k-value ranges in a wide area. Kim et al. studied 
Spellman time series cycle-cycle dataset and non-time 
series response to environmental changes dataset in yeast 
Saccharomyces cerevisiae genes, and indicated that, 
LLS shows competitive results compared with other 
imputation methods (such as KNN) on various datasets 
and percentages of missing values in the data. In a word, 
LLS is a robust and accurate missing value estimation 
method, and can reduce the effect of estimations on 
downstream analysis.
    After estimating the missing values in the gene 
expression matrix, we compute Pearson correlation 
coefficients to construct the real and symmetrical co-
expression matrix, and the co-expression networks model.
    Fig. 1 shows the fluctuations of NNSDs with 
eigenvalue spacing s. We can see from Fig. 1 that NNSDs 
follow different laws as q changes. NNSDs gradually 
transit from Wigner-Dyson distribution to Poisson 
distribution when q increases.
    We apply NRMSE ratio method to determine the 
transition completing point of NNSDs. NRMSE ratio 
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curve of NRMSE_Wigner-Dyson versus NRMSE_
Poisson is shown in Fig. 2. At the transition threshold 
qc=0.71 ratio value is 1.0, and NNSDs deviate equally 
from two standard distributions. Binary polynomial fitting 
is performed on the artificially interceptive points bigger 
than qc=0.71. The transition completing point qm=0.84 
is observed at the vertex of fitting ratio curve. Here, 
NRMSE_Wigner-Dyson is bigger than NRMSE_Poisson, 
which means NNSDs deviate far from Wigner-Dyson 
distribution, and approach Poisson distribution. 
    Weak interactions fabricated by random noises are 
separated from intrinsic strong interactions between 
genes, and then a new gene expression matrix is obtained 
reflecting the factual structures of DLBCL gene networks. 

2383 characteristically expressed genes are retained 
at qc=0.71, including all the strong correlations and 
most weak correlations between genes as well. While 
at qm=0.84, 1230 characteristic genes are reserved, 
composed of most strong correlations and few weak 
correlations.
    However, microarray datasets are of high noises and 
biological processes are of complexity, which make it 
impossible to remove noises from interactions between 
genes and from networks structures completely. In our 
findings a transition zone of [0.71, 0.84] is defined 
based on two transition points qc and qm for DLBCL 
dataset. Moreover, any point inside the zone can work 
as a criterion for factor q to remove noises, select 

Fig. 1.  NNSDs curves of DLBCL gene expression dataset. Red line is Wigner-Dyson distribution and blue line is Poisson distribution.

Fig. 2. NRMSE fitting ratio curve of NNSDs of DLBCL.
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characteristic genes, and construct gene networks. 
The higher q value is, the more removed noises are. 
Therefore, compared with qc=0.71, random noises are 
removed fully at qm=0.84. Although some correct links 
are lost, the retained characteristic genes can show most 
of the intrinsic interactions between genes, and construct 
the true structures without random noises. A solution to 
resolve the inconsistency is called soft thresholding, to 
identify a rational transition point.

3.2 Constructing topological graph

    Our results indicate that RMT is applicable to DLBCL 
gene networks, and NNSDs transit from Wigner-Dyson 
distribution to Poisson distribution. Meantime, networks 
structure transits from rich-correlation systems to poor-
correlation systems [18, 19]. In order to observe the 
changes of networks structures, we portray the topological 
graph using Biolayout at different q value. We find most 
nodes gather together as a big module for mix of strong 
and weak correlations at small q value. As q increases 
gradually, namely spurious links due to random noises 
are removed gradually from true links, some nodes break 
away from the biggest module to form small insulated 
modules. When q is close to 1, topological graph lay out 
insulated modules composed of strongly correlated genes 
as random noises are separated fully. 
    Topological graphs are shown in Fig. 3. In Fig. 3(a) 
(at transition threshold qc=0.71), most nodes get together 
for a big module, with several disperse small modules 
made up of a few nodes. While in Fig. 3(b) (at transition 
completing point qm=0.84), all modules composed of 1230 
nodes are isolated clearly. Modules with less than 5 nodes 
are portrayed dark green and others with no less than 5 
nodes are colorized. Nodes are connected through edges 
for strong interactions inside the modules. While, there 
are no edges between modules. Thus, the modularity and 
independency of networks are represented by topological 
graph. In addition, qm=0.84 is demonstrated to be a sound 
transition point for DLBCL gene networks.

3.3 Constructing hierarchical dendrogram

    Hierarchical modularity of networks indicates that 
large modules can be divided into small sub-modules; 
inside the same module genes are connected directly for 
strong interactions, and indirectly for weak interactions; 
genes from different modules are connected indirectly 
or unconnected for weak correlations; modules are 
connected for the same or similar functions. Topological 
graph exhibits the modularity and independency of 
networks but hierarchical modularity.
    To analyze the hierarchical modularity of DLBCL 
networks, we construct hierarchical dendrogram of 1230 
characteristic genes at qm=0.84 using clustering algorithm. 
Genes with similar functions are gathered together in a 
cluster. Clusters with specific functions in hierarchical 
dendrogram correspond to certain modules in topological 
graph. 14 modules and clusters are consistent in gene 
members, which are gathered closely, representing the 
modularity and independency of DLBCL networks. 
Another 8 modules and clusters are common in gene 
members, but different in that: clusters are shown as 
integrated branches, composed of closely gathered genes, 
while modules are collections of isolated small modules 
without edges through modules. 
    Alizadeh et al. [30] investigated DLBCL gene 
expression dataset using Two Way Clustering algorithm. 
They didn’t estimate the missing values in dataset, didn’t 
remove the random noises to select characteristic genes, 
and implemented clustering on expressions of all clones 
in every sample (4026*96). Four clusters were studied in 
detail: Proliferation, Germinal centre B, Lymph node and 
T cell cluster [30].
    As shown in Fig. 4(a), the branch marked dark is 
Lymph node cluster of 29 genes, including several 
signature featured genes Alizadeh et al. [30] spoke of: 
CSF-1 (macrophage-specific colony-stimulating factor), 
NK4 (natural killer transcript 4) possessing anti-tumor, 
anti-virus infection and immunoregulation effects. 

Fig. 3. Topological graph for DLBCL gene networks.
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In addition, genes involved in the remodeling of the 
extracellular matrix are contained: MMP2 and MMP9 (the 
members of matrix metalloproteinases, which effectively 
decompose the main component of basilar membrane 
Ⅳ -collagen proteins), as well as TIMP-3 (a member of 
tissue inhibitors of metalloproteinase, which regulates 
the decomposition of extracellular matrix proteins) [34]. 
Topological graph of Lymph node module is shown in 
Fig. 4(b) with 28 genes. Topological graph agrees well 
with dendrogram in gene members, signifying modularity 
and independency of networks.
    On the other hand, different clusters are connected 
for similar functions in dendrogram representing the 
hierarchical modularity of gene networks and weak 
correlations between clusters; whereas topological 
graph can not manifest the properties. MHC (major 
histocompatibility complex) cluster is magnified in Fig. 
4(c), composed of tightly linked genes. Sub-cluster 
marked light grey is composed of genes encoding 
MHC-I, while sub-cluster marked dark grey is composed 
of genes encoding MHC-II. They are linked at the root of 
the branch, inducing and regulating the immune response 
together [35]. MHC cluster is a case in point to manifest 
the hierarchical modularity and weak correlations between 
different clusters. Topological graph of MHC module is 
divided into 5 insulated sub-modules in Fig. 4(d). The 
biggest two sub-modules are made up of mixed genes 
encoding MHC-I and MHC-II. And 5 sub-modules are 

isolated without linked edges. Thus, weak correlations 
between different modules can not be represented by 
topological graph.
    To demonstrate the rationality of transition zone 
in Section 3.1, we construct hierarchical dendrogram 
at qc, qm and the outer point, and analyze the gene 
members of dendrograms respectively. Fig. 5(a) shows 
the magnified dendrogram of Proliferation cluster of 85 
genes at qm=0.84. Consistent with Alizadeh et al. [30], the 
signature featured genes include cell-cycle control genes 
(CDC2,cdk2,CIP2/Cdi1/KAP1,Cyclin A,Cyclin B1,p16 
and p55CDC), cell-cycle checkpoint genes BUB1, DNA 
synthesis and replication gene RAD54, and the gene 
Ki67 [33], gauging the ’proliferation index’ of a tumor 
biopsy. Fig. 5(b) shows dendrogram of Proliferation 
cluster of 114 genes at qc=0.71. All genes regulating cell-
cycle in Fig. 5(a) are included, as signed in Fig. 5(a, b). 
We construct dendrograms beside the two endpoints 
of transition zone. At q=0.70, the dendrogram of 
Proliferation cluster contains 119 genes. 3 newly joining 
genes are unknown genes compared with signature 
featured genes at qc=0.71. At q=0.85, the dendrogram 
includes 72 signature featured genes. Compared with 
qm=0.84, some important genes regulating cell-cycle 
are lost: two genes encoding Thymidine kinase 1, G1/
S phase transition regulatory gene CIP2/Cdi1/KAP1, 
gene encoding cell-cycle checkpoint kinase CHK1 and 
gene encoding cyclin-dependent kinase cdk2. At the 

Fig. 4. Hierarchical dendrogram examples for DLBCL gene networks. (a) Lymph node cluster, (b) Lymph node module, (c) MHC cluster, (d) MHC 
            module.
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Fig. 5. Structures of Proliferation cluster. (a) dendrogram at qm=0.84, (b) dendrogram at qc=0.71, (c) topological graph at qm=0.84.

lower point, it is random noises that make unconcerned 
genes falsely connect with genes inside the cluster. At 
the higher point, true links between genes are weakened 
or even removed while removing random noises. Again, 
the topological graph of Proliferation module shown in 
Fig. 5(c) contains 4 separate sub-modules, not showing 
the hierarchical modularity. We conclude that, the 
dendrograms constructed at q points outside the transition 
zone can not reveal the intrinsic correlations between 

genes. Namely, the transition zone [0.71, 0.84] is the 
optimal result using NRMSE ratio method.

5. Conclusions

    We propose a novel method to identify functional 
modules of gene networks taking DLBCL microarray 
dataset as an example: RMT-based hierarchical clustering 
method. As missing values in microarray dataset influence 
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