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Abstract

Due to the similar chemical properties to the inorganic component in calcified tissues, synthetic calcium phosphate has been considered as ideal 
biomaterials with excellent biocompatibility. Nanostructured calcium phosphate materials play an important role in the formation of hard tissues in 
nature. It is reported that calcium phosphates materials in nano-size can mimic the dimensions of constituent components of calcified tissues. Recently, 
the synthesis and application of nanostructured calcium phosphate materials have become a very hot field. Lots of methods have been reported to 
prepare nanostructured calcium phosphate, and various morphologies including nanoparticles, plate-like nanocrystals, nano-needles, whiskers/fibres/
wires, mesoporous, nanotubes, nano-blades, and powders with three-dimensional (3-D) structures have been obtained. More studies of nanostructured 
calcium phosphates are expected in biomedical area, such as tissue engineering scaffolds, drug/gene delivery systems and multifunctional systems. In 
this article, the synthesis and application of nanostructured calcium phosphates are reviewed and discussed.
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1. Introduction
    Calcium phosphates are abundant in nature, especially 
in calcified tissue of vertebrate. The inorganic mineral in 
bone was determined and clarified as carbonated apatite in 
early 20th century [1]. The constituting building blocks of 
bone are composites of biological apatite and molecules 
of collagen [2, 3]. Calcified tissues, such as bone or 
dentin contain ~70 wt. % apatite and ~20 wt. % collagen 
[4,5]. The formation of mineral is the process of in vivo 
biomineralization, which are built up of mineralized 
collagen fibrils [6, 7]. The mineral particles in calcified 
tissue were studied, and described as plate-like in shape. 
The thickness of the platelets ranges from 2 to 7 nm, the 
length from 15 to 200 nm and the width from 10 to 80 nm 
[2, 8]. These mineral particles are combined with collagen 
into self-assembled complex hierarchical structure in 
calcified tissue to achieve a remarkable mechanical 
performance [9].
    Many kinds of materials of calcium phosphates have 
been prepared. The synthesis and properties of different 
kinds of calcium phosphates are changed. The standard 

abbreviations and the chemical formulas of these 
materials are shown as follows: monocalcium phosphate 
monohydrate (MCPM, Ca(H2PO4)2•H2O), monocalcium 
phosphate anhydrous (MCPA, Ca(H2PO4)2), dicalcium 
phosphate dehydrate (DCPD, CaHPO4•2H2O), dicalcium 
phosphate anhydrous (DCPA, CaHPO4), octacalcium 
phosphate (OCP, Ca8(HPO4)2(PO4)4•5H2O), α-tricalcium 
phosphate (α-TCP, α-Ca3(PO4)2), β-tricalcium phosphate 
(β-TCP, β-Ca3(PO4)2), amorphous calcium phosphate 
(ACP, CaxHy(PO4)z•nH2O, n=3–4.5, 15-20% H2O), 
calcium-deficient hydroxyapatite (CDHA, Ca10-x(HPO4)
x(PO4)6-x(OH)2-x), hydroxyapatite (HA, Ca10(PO4)6(OH)2), 
fluorapatite (FA, Ca10(PO4)6F2) and tetracalcium 
phosphate (TTCP, Ca4(PO4)2O). The detailed information 
on calcium phosphates, their synthesis, structure, 
chemistry, properties and biomedical applications have 
been comprehensively reviewed recently [10-12]. Due 
to the high solubility, acidity and basicity, the calcium 
phosphates materials which have a Ca/P molar ratio less 
than 1 and more than 2 are not suitable for implantation 
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into the body [11]. Among the known calcium phosphates 
compounds, OCP, ACP, α/β-TCP and HA, are significantly 
useful for biomedical applications. Calcium phosphates 
are biocompatible, not recognized as foreign materials in 
the body, and can integrate into living tissue by the same 
processes active in bone remodeling [13]. 

    Nowadays, the development of nanotechnology has 
benefited calcium phosphates as biomaterials. It is 
reported that calcium phosphates materials in nano-size 
can mimic the dimensions of constituent components 
of calcified tissues, and be utilized as biomaterials due 
to their excellent biocompatibility [14]. Lots of method 
have been reported to prepare nanostructured calcium 
phosphates, such as co-precipitation, sol–gel synthesis, 
hydrothermal reaction, mechanical milling, etc., by which 
calcium phosphate nanoparticles with various shapes and 
sizes can be obtained [15-21].

    Herein, an overview of calcium phosphate materials 
as biomaterials is given. In this review, the nano-
effects of calcium phosphates materials, synthesis of 
nanoscale calcium phosphates, as well as applications of 
nanostructured calcium phosphate in biomedicine have 
been discussed.
2. Nano-effects of calcium phosphates materials

    Due to the similar dimensions to the inorganic 
components of calcified tissues, calcium phosphates 
materials in nano-size are expected to have better 
bioactivity compared with conventional materials [22]. 
The advantages of synthetic calcium phosphates materials 
in nano-size include higher biocompatibility, good 
biodegradability in situ, and excellent osteoconductive 
and osteoinductive capabilities [23, 24].

    Calcium phosphates materials in nano-size have 
higher specific surface area and surface roughness 
compared to conventional calcium phosphates materials. 
Therefore, nanosized calcium phosphates materials have 
stronger interaction with organic materials. For example, 
nanophase HA appeared to have 11% more proteins of 
fetal bovine serum adsorbed per 1 cm2 than conventional 
HA [25]. HA nanoparticles blended in polyacrylonitrile 
fibers were found to result in their degree of crystallinity 
rising by about 5% [26]. The sinterability of conventional 
calcium phosphate ceramics made from conventional 
powders is poor, and the resorption of ceramics is quite 
different from that of bone mineral [27]. Meanwhile, 
due to greater specific surface area, calcium phosphates 
materials in nano-size show improved sinterability and 
enhanced densification, which may improve fracture 
toughness, as well as other mechanical properties [24, 
28]. With high biocompatibility, good surface properties, 
good sinterability and ability of interaction with 
organic molecules, synthetic nanostructured calcium 
phosphates materials have promising applied potential in 
biomedicine. 

3 Synthesis of nanoscale calcium phosphate

    The bioactivity, biocompatibility, stability and 
mechanical properties of calcium phosphate materials 
are usually determined by its composition, structure, 
morphology and crystallite size [29]. Calcium phosphate 
with different morphologies including nanoparticles 
[30, 31], plate-like nanocrystals [32], nano-needles 
[33], whiskers/fibres/wires [34-36], mesoporous [35], 
nanotubes [37], nano-blades [38, 39], and powders with 
three-dimensional (3-D) structures have been prepared 
[40-42]. The performance of calcium phosphates in 
applications depends greatly on its morphologies and 
chemical compositions. To optimize and achieve better 
performances, controlling the structure and size of 
calcium phosphate materials is still a hot filed.
3.1 Calcium phosphate nanoparticles
    Calcium phosphate nanoparticles have been prepared 
by a variety of techniques such as mechanochemical 
synthesis, combustion preparation, and wet chemistry 
techniques [43-45]. The products obtained using method 
of wet chemistry techniques have controlled size and 
good dispersing property. The precipitation in solution 
is an easy method for fabrication of calcium phosphate 
nanoparticles, and chemical agents such as citric acid, 
amino acids and ethylenediaminetetraacetic acid (EDTA) 
have been used to mediate the structure of calcium 
phosphate nanoparticles [46-48]. 
    Recently, biocompatible block copolymers have 
been used to control the synthesis of calcium phosphate 
nanoparticles. For example, calcium phosphate hybrid 
porous nanospheres have been prepared through a 
facile PLGA-mPEG/PLA-mPEG assisted route at a 
relatively low temperature [49-51]. The micelles formed 
by amphiphilic block copolymer of PLGA-mPEG/
PLA-mPEG act as templates and calcium phosphate is 
combined with the micelle via the electrostatic interaction 
between Ca2+ ions and polymer segments. 
    As a typical solution-based method, the hydrothermal 
approach has proven to be an effective and convenient 
process to prepare calcium phosphate nanoparticles. 
There are many advantages of this method, including 
easily controllable reaction conditions, relatively large 
scale and high crystallinity in terms of quantity and 
quality of the desired products [28]. Zhang et al. [29] 
reported the synthesis of HA nano- and microstructures 
using water as a reaction medium through a simple 
hydrothermal process. Our research group have prepared 
HA nanorods with relatively uniform sizes and high 
crystallinity via a hydrothermal strategy [52]. The shape 
and size of the sample can be adjusted by regulating the 
reaction conditions. Through hydrothermal treatment, the 
HA nanorods with larger sizes and higher crystallinity 
are obtained compared with those prepared at a low 
temperature. 
3.2 3-D nanostructured calcium phosphate

    Morphologies, 3-D architectures and chemical 
compositions influence on the performance of calcium 
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phosphate materials in their applications. Recently, the 
fabrication and properties of 3-D architectured calcium 
phosphate materials have attracted great interests.

    I t  was demonstrated that calcium phosphate 
hollow nanostructures could be prepared through 
biomineralization in the presence of polyelectrolyte 
[54]. Wang et al. synthesized HA microspheres using 
polyelectrolyte as the morphology directing-agent [55], 
and poly(styrene sulfonate) (PSS) was used as a modifier 
with the concentration varied ranging from 0 to 9.6 wt% 
during the hydrothermal synthesis of carbonated HA 
to achieve the controlled morphology and particle size. 
The presence of PSS drastically changed the growth 
pattern of HA crystallites. The concentration of PSS was 
elucidated as an important factor for the formation of HA 
microspheres of different sizes and hierarchical structures. 
3-D architectured calcium phosphate materials were 
fabricated by the templating method. Schmidt and Tjandra 
et al. [56, 57] coated calcium phosphate on lipsome 
micelles/block copolymer templates to form nanoshells, 
and the thickness of shells was controllable by adjusting 
the addition time of calcium and phosphate salt, and 
hollow calcium phosphate nanospheres were obtained 
after calcination. The hard templates were also used to 
form 3-D architectured calcium phosphate materials. Lin 
et al. [58] reported that HA nanoparticles, nanowires and 
hollow nanostructured microspheres were successfully 
synthesized on a large scale via a facile hydrothermal 
treatment of similarly structured hard-precursors of 
CaCO3 nanoparticles, xonotlite nanowires and hollow 
CaCO3 microspheres in Na3PO4 solution in the absence 
of any surfactants, organic solvent or organic template-
directing reagents, respectively. By using calcium 
carbonate nano-ellipsoidal particles as hard templates, 
our group has successfully fabricated HA nanostructured 
hollow ellipsoidal capsules with a large specific surface 
area, which exhibited high ibuprofen loading capacity 
and good releasing property (Fig. 1) [53]. It is a general 
strategy to delicately control the morphologies of HA 
materials from simple morphologies to complicated 
3D architectures using the hard-template with similar 
morphologies and architectures.

    Beside, surfactants are also usually used as the 
controlling reagent to prepare 3-D architectured calcium 
phosphate materials. Cheng and Liu et al. [59, 60] 
prepared flower-liked HA microspheres using EDTA 
as the template-directing reagent under hydrothermal 
treatment and microwave irradiation. The microwave-
assisted method has been successfully used for the 
synthesis of monetite with flowerlike and bundlelike 
morphologies using CaCl2•2.5H2O and NaH2PO4 in the 
presence of sodium dodecyl sulfate (SDS) in mixed 
solvents of water and EG [61]. When the product was 
immersed in NaOH solution, the monetite could transform 
into HA, and the flowerlike structure could be maintained. 
Block copolymer was also used to control the synthesis 
of 3-D architectured calcium phosphate materials. Wang 
et al. [62] reported that flower-like nanostructured 

HA hollow spheres assembled with nanosheets with 
a hierarchical morphology were fabricated via a rapid 
microwave-assisted hydrothermal route. The presence 
and concentration of block copolymer poly(lactide)-
block-poly(ethylene glycol) (PLA-PEG) were important 
parameters for the formation of the hollow structure. 

3.3 Biomimic calcium phosphate nanomaterials

    The performance of calcium phosphate in biomedical 
applications depends greatly on its morphologies, 
architectures and chemical compositions. Therefore, 
efforts have been done to develop biomimic calcium 
phosphate nanomaterials. Up to now, the major efforts to 
develop biomimic HA mainly involved macromolecular 
and surfactant controlled self-assembling [63-68], and 
biomineralization [69-73]. Our research group has 
developed a surfactant-free solvothermal method using 
CaCl2 and NaH2PO4•H2O in ternary solvents of water, 
ethylene glycol (EG) and N,N-dimethylfomamide (DMF) 
for the preparation of a variety of HA nanowire/nanotube 
ordered arrays and their fabrics with biomimic structures 
including HA sheets with brush-like ends, nanotube 
arrays and their fabrics, nanowire arrays and their fabrics 
(Fig. 2) [37]. The solvents have obvious effects on 
the morphology and crystal phase of the product. One 
advantage of this method is that the hard template and 
surfactant are not needed, avoiding the procedures and 
cost for their removal in the product. The as-prepared HA 
nanowire/nanotube ordered arrays and their fabrics show 
similarity in structure to the natural hard tissues, and may 
be potentially useful in biomedical areas. 

    Lin et al, reported single-crystalline of biomimetic 
HA porous microspheres with co-substituted essential 
trace elements (Na, Mg, K, F, Cl and CO3

2−) of natural 
bone synthesized via a facile hydrothermal process at 
a low temperature [74]. The morphology images of the 
control sample and synthetic powders CS-HAp1-4 via 
hydrothermal treatment at 120 oC for 24 h are presented 
in Fig. 3. The biomimetic HA porous microspheres were 
assembled from the nanosheets with thickness of about 
60 nm, widths and lengths of up to 2 μm. The novel 3-D 
architectures resulted in favourable drug loading and 
release property, and the co-substituted essential trace 
elements enhanced the degradability of the obtained 
products in comparison with pure HA nano-particles. 

    Electrospinning has been recognized as an efficient 
technique for fabricating polymer nanofibers which 
can be widely used in biomedical areas [75]. Calcium 
phosphate nanofibers were obtained by electrospinning 
using solution containing polyvinyl alcohol [76,77]. 
Our research group reported a simple method for the 
preparation of HA/PVP composite nanofibers, 3-D fabrics 
with different shapes and aligned nanofiber arrays by 
electrospinning (Fig. 4) [78]. Then, the single-phase HA 
fabrics, tubular morphologies or aligned nanofiber arrays 
were obtained through thermal treatment of corresponding 
composite precursors. One of the advantages is that it is 
facile to obtain HA nanofibrous scaffold with designed 
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structure. Biomineralization was also used to prepared 
biomimic calcium phosphate nanostructure combined with 
the method of electrospinning. Our group reported ACP/
PDLLA composite nanofibers prepared by electrospinning 
[79]. ACP nanoparticles with diameters ranging from 20 
to 80 nm were synthesized using a simple precipitation 
method. The hybrid materials showed good ability of 
biomineralization and cytocompatibility in vitro.

4. Application of nanostructured calcium phosphate

4.1 Hard tissue engineering

    Because of excellent biocompatibility, calcium 
phosphate based materials have been used in hard 
tissue repair for decades [80]. The chemical properties 
of calcium phosphates are similar to the inorganic 

Fig. 1 TEM and SEM micrographs of (a)–(c) CaCO3 cores; (d)–(i) HAp 
nanostructured hollow ellipsoidal capsules prepared using dilute H3PO4: 
(d) and (e) H3PO4 : H2O = 1 : 300; (f) H3PO4 : H2O = 1 : 100; (g)–(i) 
H3PO4 : H2O =1:100. Reprinted from Ref. [53].

Fig. 2 SEM (a–c) and TEM (d–f) micrographs of the HAp sample 
prepared using CaCl2 and NaH2PO4•H2O in mixed solvents of H2O/EG/ 
DMF (H2O/EG = 1 : 1) by solvothermal treatment at 200 oC for 24 h. The 
insets of (e and f) are the SAED patterns and HRTEM image. Reprinted 
from Ref. [37].

Fig. 3 Morphology images of the control sample (A) and the synthetic 
CS-HAp1 (B), S-HAp2 (C), CS-HAp3 (D) and CS-HAp4 (E, F) porous 
microspheres. Reprinted from Ref. [74].

Fig. 4 Scheme of the strategy for fabrication of HAp/PVP composite 
nanofibers and fabrics (A) and the process of formation of HAp 
nanofibers (B). Reprinted from Ref. [78]. 

component in bone tissue. Thus, synthetic calcium 
phosphates with strong affinity to host hard tissues offer a 
great advantage in hard tissue repair. 

    However, the low mechanical properties of traditional 
calcium phosphate ceramics restrict their use [28]. 
Recent novel ceramics sintered with nano-sized grains 
of calcium phosphate have reignited interest in load-
bearing applications. Compared with traditional calcium 
phosphate based materials, nano-scaled calcium phosphate 
materials have shown many advantages, such as improved 
sinterability, enhanced mechanical properties and better 
bioactivity. Bose et al. [81] reported nanostructured HA 
ceramics with average grain sizes ranging from 168 ± 86 
nm to 1.16 ± 0.17 μm were processed using microwave 
sintering. The HA compact with smaller sized grains 
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showed the higher compressive strength. The decrease in 
strength due to increase in grain size was less prominent 
in HA than what would be predicted by the classical 
Hall–Petch equation. An increase in bone cell adhesion 
and proliferation with decreasing grain size was observed. 
Lin et al. [82] reported that the maximal values of the 
bending strength, elastic module, Vickers hardness 
and compressive strength of the samples fabricated 
from nano-size β-TCP powders were more than two-
times those of bioceramics obtained from micro-size 
β-TCP powders. The degradability of β-TCP ceramics 
sintered from nanosized powders was just about one-
quarter of that sintered from microsized powders, and the 
degradability of could be adjusted by the particle sizes.
Beside the ceramic materials, porous 3-D nanocomposites 
of calcium phosphate and polymer can also be employed 
in bone repair. Cui et al. [83,84] developed nanosized 

Fig. 5 SEM and TEM micrographs of the sample prepared using 3.5 g/
L PLA-PEG and 20 mM [Ca2+] by microwave heating at 120oC for 60 
min. Reprinted from Ref. [62].

Fig. 6 Luciferase activity in COS-7 cells transfected with pGL3-control 
vector complexed with calcium phosphate/PLGA-mPEG hybrid porous 
nanospheres. The amount of DNA in the legend was for a well of 96-well 
plate. The final concentration of Ca2+ was 5 mM. The amount of Calcium 
phosphate/PLGAmPEG hybrid porous nanospheres was 0.2 mg per well. 
Custom Calcium phosphate transfection was carried out according to the 
literature. Reprinted from Ref. [49]

Fig. 7 Room-temperature excitation spectrum (a) and PL emission 
spectra (b) of Eu3+/Gd3+-HAp nanorods; (c) the photograph of 
dispersed solutions of Eu3+/Gd3+-HAp nanorods in deionized water; 
and (d) the PL photograph of Eu3t/Gd3teHAp nanorods powder and 
their dispersed solutions under irradiation by UV lamp (365 nm). The 
doping concentrations of Eu3+ and Gd3+ were 5 mol% relative to 
Ca2+, and the ratios of Eu3+ to Gd3+ in (c) and (d) from 1 to 5 were 1:0, 
2:1, 1:1, 1:2 and 0:1. Reprinted from Ref [98].

hierarchical self-assembly of mineralized collagen nano-
fibrils that mimicked the nanostructure of bones. HA 
crystals grew on the surfaces of the collagen fibrils. The 
mineralized collagen fibrils aligned parallel to each other 
to form mineralized collagen fibers. The investigation 
and simulation of naturally occurring fibril structures can 
offer some new ideas in the design and fabrication of new 
functional materials for applications such as bone grafts or 
for use as scaffolds in tissue engineering and biomimetic 
engineering materials [84]. Li et al. [85] reported porous 
3-D nanocomposites of n-HA/PA66 as tissue engineering 
scaffold material prepared by co-precipitation method. 
The composite had excellent mechanical properties 
close to that of natural bone. The porous material had 
not only macropores but also micropores on the walls of 
the macropores. Such biomaterial with well-controlled 
composition and porous structure can be a good bone 
repair materials and can provide a standard scaffold 
for investigating the cell/material interaction in tissue 
engineering.

    Our group has reported HA fabrics which can be used 
as the bone tissue engineering scaffold. The single-phase 
HA fabrics, tubular morphologies or aligned nanofiber 
arrays were obtained through thermal treatment of 
corresponding electrospun HA/PVP composite nanofibers 
[78]. The as-prepared HA fabric was used as the substrate 
for MSCs culture. The results exhibited that the HA 
scaffold was biocompatible, and the cells could attach 
well on the HA fabric and combine tightly with HA 
fibers. In addition, the ACP/PDLLA composite nanofibers 
were also fabricated through electrospinnig [79]. The 
ACP/PDLLA composite nanofiber matrix showed a good 
biocompatibility when osteoblast-like MG63 cells were 
seeded. The ACP/PDLLA composite nanofibers exhibited 
a fast mineralization behavior in the simulated body fluid. 

4.2 Drug/gene delivery

    Bone not only acts as a reservoir for calcium and 
phosphate, but also stores growth factors, fatty acids and 
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is involved in buffering the blood by controlled release 
of alkaline salts [86]. Calcium phosphate as the inorganic 
constituent in bone is biocompatible, therefore, synthetic 
calcium phosphate materials are ideal biomaterials for 
drug/gene delivery. 

    Our group reported a flower-like nanostructured HA 
hollow microspheres fabricated via a rapid microwave-
assisted hydrothermal route, and explored its application 
as anticancer drug carrier for cellular delivery of 
mitoxantrone (Fig. 5) [62]. The materials exhibited 
sustained drug release behavior in vitro, and the 
intracellular drug distribution tests indicated that the MIT 
loaded in carriers could enter the cells efficiently. Cai 
et al.[87] reported hollow-structured calcium phosphate 
nanospheres which could be transformed into pin-shaped 
crystallites under ultrasonic treatment. The release of 
encapsulated compounds could be on/off triggered and 
the kinetics was precisely regulated by the power density, 
duty cycle and application time of ultrasound. 

    It was reported that calcium ions increased the in 
vitro transfection efficiency of pDNA–cationic liposome 
complexes from three- to 20-fold.[88] In the review by 
Maitra, calcium ions were described to play an important 
role in endosomal escape, cytosolic stability and enhanced 
nuclear uptake of DNA through nuclear pore complexes. 
The special role of exogenous calcium ions to overcome 
obstacles in practical realization of this field suggests that 
calcium phosphate nanoparticles can be designated as 
second-generation nonviral vectors for gene therapy [89]. 
 
    Early methods of gene transfer using calcium phosphate 
materials, involved coprecipitating DNA with calcium 
phosphate [90]. But irregular particle morphology and 
large size impeded using calcium phosphate precipitate 
as a carrier for DNA. This group reported the preparation 
of calcium phosphate/PLGA-mPEG hybrid porous 
nanospheres and their application in gene delivery 
[49]. Calcium phosphate/PLGA-mPEG hybrid porous 
nanospheres exhibited very high DNA loading capacity 
(approximately 40–150 times higher than that of the 
mesoporous silica vectors reported) and good transfection 
efficiency. Unlike the traditional calcium phosphate 
transfection procedure in which calcium phosphate 
usually precipitates in the presence of DNA molecules, 
the reported method consisted of two steps: preparation of 
calcium phosphate nanostructured vectors in the absence 
of DNA, and then loading and transfection of DNA. HA 
nanorods were also used as the gene carrier (Fig. 6) [52]. 
The results demonstrated a significant enhancement of 
DNA adsorptive capacity of HA nanorods compared with 
traditional DNA adsorbents. And adsorbed DNA could be 
desorbed reversibly from HA nanorods with high eluted 
percentage.
4.3 Multifunctional nanostructured calcium phosphate
    The development of multifunctional nanostructured 
systems holds a promise for the future of clinical 
treatments to enhance therapeutic efficacy [91, 92]. It 

is highly desirable to develop novel multifunctional 
nanostructured systems that can achieve simultaneous in 
vivo imaging and treatment. Due to the biocompatible 
nature, HA nanostructures may serve as the ideal 
candidate for both bio-imaging and drug delivery. 
Recently, the research on dual or multifunctional 
nanostructured HA systems for biomedical applications 
has become a hot topic [93-97].

    Our group reported a facile method for the preparation 
of ACP/PLA-mPEG hybrid nanoparticles which were 
successfully used as the precursor for preparation of 
ACP porous nanospheres [99]. Photoluminescence 
function of ACP porous nanospheres was achieved 
by europium doping. The experimental results of 
photoluminescence, cytotoxicity as well as in vitro 
drug loading and release showed that the as-prepared 
Eu3+:ACP porous nanospheres were biocompatible and 
bioactive with favorable properties of photoluminescence, 
drug loading and drug release, implying Eu3+:ACP 
porous nanospheres are a new kind of promising 
biomaterial with bi-functions of both luminescence and 
drug release. Multifunctional Eu3+/Gd3+ dual-doped HA 
nanorods were prepared by a rapid microwave-assisted 
method [98]. The dual-doping of Eu3+/Gd3+ endowed 
HA nanorods with photoluminescent and magnetic 
multifunctions. The PL intensity and magnetization of 
doped HA nanorods could be adjusted by varying Eu3+ 
and Gd3+ concentrations (Fig. 7). The as-prepared Eu3+/
Gd3+ doped HA nanorods exhibited inappreciable toxicity 
to the cells in vitro, and showed a high drug adsorption 
capacity and sustained drug release using ibuprofen as a 
model drug. The noninvasive visualization of nude mice 
with subcutaneous injection indicated that the Eu3+/Gd3+ 
doped HA nanorods with the photoluminescent function 
are suitable for in vivo imaging. The Eu3+/Gd3+ dual-
doped HA nanorods are promising for applications in the 
biomedical fields such as multifunctional drug delivery 
systems with imaging-guidance. Furthermore, Adair et 
al. [100-102] reported calcium phosphate nanocomposite 
particles that encapsulated both fluorophores and 
chemotherapeutics, within a 20-30 nm diameter, pH-
responsive, nonagglomerating, nontoxic calcium 
phosphate nanoparticle matrix. Encapsulation of imaging 
agents and drugs in calcium phosphate nanoparticles has 
a potential as a nontoxic, bioresorbable vehicle for drug 
delivery to cells and tumors. 

5 Conclusion

    To optimize and achieve better performances, 
controlling the structure and size of nanostructured 
calcium phosphate materials has become a hot field. 
Up to now, many methods have been reported to 
prepare nanostructured calcium phosphates, such as co-
precipitation, sol–gel synthesis, hydrothermal reaction, 
mechanical milling, etc. Nanostructured calcium 
phosphate materials with a variety of morphologies 
including nanorods,  nanosheets ,  nanopart icles , 
biomimic structure, novel 3-D structures, have been 
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