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Single Cell Manipulation Technology

Abstract
                         

With microfluidic technique emerging, cell manipulation technology combines with microfluidic 
become a promising tool for single-cell-level manipulation. To obtain a kind of or single pure target 
cell for eliminating interference of useless cells in the trial of molecular biology, genetic analysis, 
proteomics and single cell analysis, various cell manipulation techniques have been developed 
for recovery specific cells. In this review, we introduce the principles of each cell manipulation 
technology and overlook the latest achievements of cell manipulation technique by categorizing 
externally applied manipulation forces: optical, electrical, magnetic, acoustic, mechanical. We also 
summarize the advantages and drawbacks of each cell manipulation technique.
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Introduction

Since single cell sizes are in a range from several 
micrometers to hundreds of micrometers were 
discovered, researchers began to observe and study 
them. From the mid-1900s, scientists and engineers 
started to have strong interest in manipulation 
biological particles techniques, not just in observation 
of stationary microscopic particles [1]. In order to meet 
the demands of observation and analysis of cellular 
and intracellular components, much research have been 
done to find an effectively way to manipulate cells at 
single-cell-level by researchers [2-6]. 

With the microfluidic technology emerging in 
1980s, scientists have devoted a lot of work to 
improve the performance of microfluidic. In the early 
days, microfluidic approaches are used in various 

research fields such as molecular biology, genetic 
analysis and proteomics, but not cell biology [7]. Due 
to the advantages of microfluidic, such as precisely 
control the cellular environment and easy to analyze 
cellular at the single-cell-level, it is very appropriate 
for cell biology. Hence, microfluidic technology 
was introduced into the field of cell biology by 
researchers step by step. After decades of development, 
microfluidic technology has been successfully used in 
the area of manipulation fluid droplets, particles, single 
cell, and so on [8]. 

Nowadays, microfluidic technique plays a critical 
role in cell manipulation field. Cell manipulation 
technology, which is applied to sort cells, separate 
cells, trap cells, isolate cells, move cells, recover 
cells and so on [9-14], combined with microfluidic 
technique make the ways of manipulation cells at 
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single-cell-level more precision and convenient than 
ever before. According to different cell manipulation 
forces generation principles, cell manipulation 
technology can be divided into optical manipulation 
technique, magnetic manipulation technique, electrical 
manipulation technique, acoustic manipulation 
technique and mechanical manipulation technique. 
This review will introduce the principles of each cell 
manipulation technique, and overview the current 
situation of them, and then show the advantages and 
drawbacks of each cell manipulation technique at the 
end.

Single cell manipulation technology
Optical manipulation technique

A concept of an optical trapping technique was 
first reported by Ashkin at Bell Labs in 1970, they 
have demonstrated that micro-sized particles had been 
accelerated and trapped in stable optical potential 
wells using only the force of radiation pressure from 
a continuous laser [15]. Shortly afterward, optical 
trapping and manipulation of viruses and bacteria by 
laser radiation pressure were demonstrated with single-
beam gradient traps by Ashkin and his colleagues 
[16]. From optical trapping, also known as “optical 
tweezers”, was first reported to now, there have been 
many improvements of cell optical manipulation. 

Opt ical  manipulat ion technique has  found 
applications in both physics and biology. However, 
how to use a laser beam to manipulate particles or bio-
particles? An optical manipulation is formed by tightly 
focusing a laser beam with an objective lens of high 
numerical aperture (NA). A dielectric particle near or 
in the focus will experience a force due to a portion 
of the scattering of incident photons momentum of 
will transfer to the particle. This optical force has 
traditionally been decomposed into two components: 
scattering force and gradient force [17]. The scattering 
force can be imagined photons as fire horses pushing 
the particle moving towards of the light propagation 
direction and the effective scattering force can be 
calculated. The scattering force of a sphere is

where I0 is the intensity of the incident light, σ is the 

scattering cross section of the sphere, nm and np is 
the index of refraction of the medium and particle 
respective, c is the speed of light in vacuum, a is 
the radius of sphere, m is the ratio of the index of 
refraction of the particle to the index of the medium 
(np/nm), and λ is the wavelength. The gradient force 
arises from the interaction of the induced dipole 
with an inhomogeneous field. The gradient force is 
proportional to the intensity gradient (∇I0), shown in 
Eq. (3).

Although the theory of optical manipulation is 
still being developed, the basic principles are still the 
same. For stable trapping requires the gradient force 
to dominate, and is achieved when the beam diverges 
rapidly enough away from the focal point. Intensity 
gradients in the converging beam pull small particle 
toward the focus, whereas the radiation pressure of the 
beam tends to blow them down the optical axis. Under 
the gradient force dominates condition, a particle can 
be trapped in three dimensions, near the focal point, 
shown in Fig. 1 [18].
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Fig. 1 A diagram of optical force for particle trapping. A 
dielectric particle will experience a gradient force that pull it 
toward the focus and a radiation pressure that push it away from 
the focus, while these two forces are balance, the particle is 
trapped [18].
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Based on this principle, researchers developed 
a kind of tool, which is called optical tweezers, to 
manipulate particles and bio-particles [19-22]. These 
particles and bio-particles include cells, bacteria, 
virus, microbeads, and so on. However, the usefulness 
of this technique has been limited, particularly in 
manipulating bio-particles, due to the manipulation 
laser-beam may cause some potential damage to the 
bio-samples. In order to characterize photodamage of 
optical manipulation technique, Neuman characterized 
photodamage throughout the near infrared region 
for optical trapping by using Escherichia coli as 
specimens [23]. They found that the action spectrum 
for photodamage minima at 830 and 970 nm, and 
maxima at 870 and 930 nm. A few years later, in order 
to quantify potentially harmful or misleading heating 
effects of this technique in biophysical experiments, 
Peterman demonstrated that the heating effect in water 
have non-negligible effects in typical biophysical 
experimental circumstances and it should be taken into 
account when laser powers of more than 100 mW are 
used [24]. 

Although optical manipulation technique has its 
limitation in the field of bio-particle manipulation, 
this technique is still a powerful tool to manipulate 
bio-particles due to its own advantages, such as high-
throughput and high-accuracy. Eriksson and Enger 
created an environmental gradient between two media 
in a microfluidic system and used optical tweezers 
to move a single trapped cell repeatedly between 
the different environments for analyzing rapid and 
reversible cytological alterations in single cells, the 
schematic of the setup is shown in Fig. 2 [25]. The 
trapped object can be moved within the microfluidic 
system using the motorized microscope stage to change 
the position of the channel system relative to the fixed 
trap.

In particle sorting field, MacDonald demonstrated 
an optical sorter for microscopic particles that exploits 
the interaction of particles-biological or otherwise-with 
an extended, interlinked, dynamically reconfigurable, 
three-dimensional optical lattice. This concept 
of optical fractionation can both sort by size and 
refractive index. The sorting efficiency of this method 
was approxmatey 100% [26]. After that, researchers 
have designed various structures of microfluidics 
combined with optical manipulation technique for 
sorting, trapping and separating cells or particles (see 
Fig. 3). Kovac and Voldman designed a microfluidic 
chip contains a microwell array that can be passively 

loaded with mammalian cells via sedimentation shown 
in Fig. 3(a). Subsequently, target cells were selected 
by microscopy, and then, used the scattering force 
from a focused infrared laser to levitate target cells 
from their wells into a flow field for collection. This 
work achieved post-sort purities up to 89%, and up 
to 155-fold enrichment of target cells [27]. Wang and 
his workmates designed a microfluidic chip based 
on dynamic fluid and dynamic light pattern and a 
recognition capability of multiple cell features shown 
in Fig. 3(b). The experiments of sorting yeast cells 
and human embryonic stem cells are demonstrated by 
this approach [28]. Kim designed a generic single cell 
manipulation tool that integrates optical tweezers and 
microfluidic chip technologies for handling small cell 
population sorting with high accuracy shown in Fig. 
3(c) [29].

Over the last few years, although, optical manipula- 
tion technique combine with microfluidic has 
made a big advancement and been used for clinical 
applications. There are some issues and drawbacks, 
such as photodamage, still need to improve and solve. 

Electrical manipulation technique 

Electrical manipulation technique, such as single cell 
gel electrophoresis assay (SCGE) and dielectrophoresis 
(DEP) cell manipulation technique, also has been 
reported. SCGE was first presented by Ostling and 
Johanson in 1984, they used this method to study 
radiation-induced DNA damages in individual 
mammalian cells [30]. And the term “dielectrophoresis 

Fig. 2 A schematic of experimental setup of the optical 
tweezers. In this design, the laser beam through an optical 
system for manipulation target cells, which are selected by a 
digital microscope system. This experimental optical tweezers 
can move the target cells from one side to another side in the 
microfluidic [25].
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(DEP)” was coined by Pohl in 1951, who performed 
important early experiments with small plastic particles 
suspended in insulating dielectric liquids and found that 
the particles would move in response to the application 
of a non-uniform AC or DC electric field [31]. At that 
time, however, the DEP manipulation technique had 
not been applied to manipulate bio-particles and cells. 
Currently, nevertheless, DEP manipulation technique 
has been highlighted due to its potential in the selective 
spatial manipulation of particles and cells. 

SCGE was used as a tool to assess genetic damage in 
exposed populations. It enables the detection of various 
DNA damage in individual cells with ease and speed. It 
is, therefore, well suited to the analysis of a large group 
in a population [32]. Miloshev has applied the SCGE 
assay on yeast cells treated saccharomyces cerevisiae 
cells with hydrogen peroxide, methyl methanesulfonate 
(MMS) and two DNA damaging agents [2]. The human 
red blood cells were separated at the single-cell-level 
by using capillary zone electrophoresis in 2000. This 
finding, which reported by Tsuda, is the first report to 
present the fine separation of population of red blood 
cells at single-cell-level [33]. However, SCGE is rarely 
found in single cell manipulation field, due to it is very 
difficult to manipulate individual cell at single-cell-

level and hard to recovery single target cell. 

At the same time, researchers developed DEP 
manipulation technique for single cell manipulation. 
DEP, the force produced by acting a non-uniform 
electric field upon a neutral object, is shown to be 
a simple and useful technique for study of cellular 
organisms [34]. The magnitude of DEP force is 
depended on the size, shape, electrical property of 
the particle, and the electric field gradient. While the 
direction of the DEP force is the same as the electric 
gradient, this phenomenon is called as positive-DEP 
(p-DEP). Conversely, it is called as negative-DEP 
(n-DEP). The DEP force can be expressed as Eq. (4),

where, εm is the medium permittivity, R is the particle 
radius and ERMS is the root mean square magnitude of 
the electric field. fCM is the Clausius–Mossotti (CM) 
factor. It is given by

where, ε̄p and ε̄m are the complex permittivity of 

Fig. 3 Various structures of optical manipulation devices. (a) Each single cell is trapped in a microwell, selecting the target cell by 
employing fluorescence method, and then push the target cell out of the microwell by using a optical manipulation technique. (b) 
Cells solution and buffer are injected into the microfluidic by syringe pump, while the sample flow pass the detection zone, target 
cells are detected by CCD detector, the target cells will be changed direction by optical tweezers. (c) Cells are separated according to 
the size of cells by optical force [27-29].
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the particle and the medium, respectively. And ε̄ 
is expressed as ε+σ/jω. ε is permittivity and σ is 
conductivity of the particle and the medium, and 
j= 1− . The CM factor is comprised between −0.5 
and 1. When the particle is less polarizable than the 
surrounding medium ( fCM < 0) it will experience a 
n-DEP force pushing it towards regions of electric 
field minima. On the contrary, when the particle is 
more polarizable than the medium ( fCM > 0) it will be 
attracted by a p-DEP force towards regions of field 
maxima [35]. Based on the theory of DEP, scientists 
and engineers designed and developed many devices 
for manipulation cells. DEP cell manipulation 
technique is also a research highlight in cells 
manipulation field, due to the advantages of harmless 
to the cell, pre-treatment free, high precision, easy to 
manipulate an individual cell, and so on. Nowadays, 
DEP cell manipulation technique can achieve target 
cell separation [36], trapping/capturing [37] and release 
[38]. In order to obtain target particle or cell faster and 
more effective, a novel concept of active microwells, 
which can vertically trap and control single particles by 
means of n-DEP, was presented. The authors applied 
sinusoidal signals on the electrodes at frequencies 
ranging from 100 kHz to 1.5 MHz and amplitudes 
between 2 V and 7 V. Particles are successfully trapped 
and levitated at the level of the central electrode in 
the middle of microwells with a diameter of 125 μm, 
shown in Fig. 4 [35].

Different electrode shapes produce different electric 
field gradient. Therefore, various electrode shapes were 
designed for cells and particles manipulation, such as 
ring electrode, quadrupole and so on. Thomas designed 
a ring electrode for single cell immobilization, 

shown in Fig. 5(a) and (b). The analysis of the 80 
µm diameter ring electrode showed that a 15.6 µm 
diameter latex particle could be held with a force of 
23 pN when applied voltage of 5 V peak–peak on the 
electrode [39]. Another design using quadrupole to trap 
cells by means of alternating current electrothermal 
effect (ACET), shown in Fig. 5(c) and (d) [40]. This 
quadrupole method can trap single cells by adding 
voltage on different electrode groups.

Park  presented  a  des ign ,  fabr ica t ion ,  and 
characterization of a microfluidic biochip with 
integrated actuation electrodes for manipulation 
single cell and single micro-bead by DEP and sensing 
electrodes for detection the trapping particles by using 
the impedance detection method, shown in Fig. 6 [41].

DEP cell manipulation technique combines with 
microfluidic, which contains a microwell array inside, 
for high-efficient single cell trapping and analysis 
was reported in 2011 [42]. At the same time, a 
novel concept of micro-cavity array with multilayer 
electrodes for trapping and programmable releasing 
single cells was proposed [38, 43-45]. The model of 
multilayer electrodes DEP chip is shown in Fig. 7(a). 
This design can trap cells by applying the AC signal to 
the middle and top electrodes, the electric field gradient 
was simulated by finite element analysis software, as 
shown in the Fig. 7(b). Similarly, applied the AC signal 
to the bottom and top electrodes for releasing cells, and 
the electric field gradient is shown in Fig. 7(c). 

To fabricate large electrode array in microfluidic 
chip, maybe result in a complex and large electrode 
driver circuit. This will need to integrate both MEMS- 
and CMOS-process, and lead to very high design costs. 

Fig. 4  Cross-section of a microwell consisting of a 125 μm hole drilled in a multilayer flexible PCB substrate.  A fluid carrier is used 
to create a channel under the well which is filled by capillarity, while the hydrophobic coating on top side allows the fluid to be kept 
within the hole and a meniscus consequently to form. A particle can be inserted manually or with the support of a cell dispenser from 
the top and will be trapped at the level of the second metal layer [35].
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Hence, researchers proposed optoelectronic tweezers 
(OETs) based on the DEP principle. OETs devices 
are conceptually similar to solar cells. Instead of 
generating photocurrents, the photo generated carriers 
increase the conductance locally near the illuminated 
area, thus forming virtual electrodes, the experimental 
and fundamental structure of OETs shown in Fig. 8 

[14]. 

On the OETs basis, a massively parallel manipula-
tion of single cells and micro-particles method was 
presented. It has been demonstrated that parallel 
manipulation of 15,000 particles can be trapped on a 
1.33×1.0 mm2 area [46]. A few years later, the authors 
designed a device of phototransistor-based OETs for 
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Fig. 5 Different electrode shapes for cell manipulation. By applying voltage on the different electrodes to generate non-uniform 
electric field for cells trapping [39, 40].
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dynamic cell manipulation in cell culture media. This 
device demonstrated precise control of separation 
between two cells [47]. In order to obtain a single cell 
for sample preparation and analysis, Huang designed 
an OETs platform with microfluidic [48]. Recently, a 
compact OETs system combined cell manipulation and 
analysis is presented. The trap strength and profile for 
two emission wavelengths have been measured and 
the maximum trapping force of 13.1 and 7.6 pN was 
achieved by projected micro-LED devices emitting at 

λmax 520 nm and 450 nm, respectively [49]. In all, this 
OETs system is very suited for single cell manipulation 
and fluorescence imaging of immune cell.

Magnetic manipulation technique
Magnetic manipulation technique, which known as 

magnetic tweezers, was emerged later than electrical 
and optical manipulation techniques. The magnetic 
force is generated by a magnetic field gradient. While 
this force acting on a magnetic particle, it depends 
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on the volume of the particle (V), the difference in 
magnetic susceptibilities, Δχ(Δχ=χp−χm), between the 
particle (χp) and surrounding buffer medium (χm), as 
well as the magnetic flux density (B) and magnetic flux 
density gradient (∇B) [50, 76],

    

To our knowledge, there are two ways to create 
magnetic field. One way is applying permanent 
magnets to create magnetic field, and the other way 
is utilizing electromagnets. A system that utilizing 
electromagnets is more flexible and easier controlled 
than the permanent one. 

Based on this theory, the magnetic manipulation 
technique for particles was proposed. This technique 
with great advantages, for instance, magnetic 
manipulation technique is not affected by particle 
surface charges,  PH, ionic concentrat ions or 
temperature. In recent years, it was widely applied in 
biology, such as to manipulate DNA or RNA molecules 
[51], micro- or nanoparticles [52], single cell [53], 
and can be used for analysis of cell mechanics as well 
[54, 55]. In order to instead of permanent magnets 
and ease to control the particles, an electromagnet was 
assembled to generate a constant magnetic gradient for 
DNA manipulation by Haber [56]. After that, based 
on the general circuit theory and magnetic bubble 
technology, Lim demonstrated that a class of integrated 

circuits for executing sequential and parallel timed 
operations on an ensemble of single particles and cells 
[57]. In single cell manipulation field, Liu reported 
a simple and straightforward approach to fabricate 
magnetic nanofiber segments for cell manipulation. 
They used NIH 3T3 cells, which were cultured in a 
medium containing magnetic fibers, as assay samples, 
the result of the assays showed that cells can be 
conveniently manipulated with a magnet, shown in 
Fig. 9 [58].

Ebrahimian injected magnetic particles of 1 μm 
diameter into barley cell vacuoles using a microinject 
system under microscopic control. To meet the purpose 
of manipulation cells at single-cell-level by using 
magnetic tweezers to manipulate the magnetic particles 
in the cells [59]. In order to fabricate a microstructure 
that can be powered and controlled wirelessly in fluidic 
environments. A kind of biocompatible ferromagnetic 
microtransporters driven by external magnetic fields 
was described by Sakar. Those microtransporters 
were fabricated with SU-8 photoresist and magnetic 
nanoparticles [60]. Fig. 9(a) shows the shapes of the 
microtransporters. Among Fig. 10, (b) to (d) show 
the process of manipulation of a target cell. (b) The 
orientation of the transporter is adjusted according to 
the position of the target cell. (c) With the application 
of an out-of-plane time-varying magnetic field, the 
transporter starts translating toward the target. The 
pulsing frequency is 100 Hz. (d) The target is engaged 
and transported out of the field of view. At the end, the 
authors demonstrated that the average velocity of the 
transporter can up to 350 μm/s.

Another application of magnetic manipulation 
technique is magnetic activated cell sorting (MACS). 
MACS is a method for separation of various cell 
populations depending on their particular surface 
antigens. The procedure of MACS is that the cell 
solution, which the target cells expressing their 
antigen to attach to the magnetic nanoparticles coated 
antibodies, is transferred on a column placed in a 
strong magnetic field, the labeled cells are separated 
by the magnetic force from the magnetic nanoparticles. 
MACS method is extensively used in biotechnology for 
a wide range of application from in vitro diagnostics 
to cell-based therapies. MACS allow high-throughput 
separation of magnetically labeled target species [61]. 
Nowadays, circulating tumor cells (CTCs) have been 
studied as a mean of overcoming cancer. In order to 
select and isolate the rarity and heterogeneity of CTCs, 
a two-stage microfluidic chip was designed by Hyun, 
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83Nano Biomed Eng 2015, Vol. 7, Issue 3

http://www.nanobe.org

[62]. The first stage (Fig. 11(a) and (b)) involves a 
microfluidic MACS chip to elute white blood cells 
(WBCs). The second stage (Fig. 11(c) and (d)) involves 
a geometrically activated surface interaction (GASI) 
chip for the selective isolation of CTCs.

Due to the physics of separation is based on a single 

parameter - magnetization, the MACS is generally 
effective only for single-species-target cells selection. 
In order to separate multi-species cells, researchers 
according to difference magnetization degree of 
different types of magnetic nanoparticle and base 
on the principle of MACS, a multi-target magnetic 
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(d) (e) (f) (g)

(h) (i) (j) (k)

M(a) (b)

(c) (d)

live cell

dead cell

Fig. 9 (a)-(c) Schematic of magnetic particle doped nanofiber segments in water drops on a glass slide. (d)-(k) Showing cell 
movement path, controlled by an external magnetic field. The scale bar is 20 μm [58].

Fig. 10	  (a) The shapes of microtransporter. (b)-(d) Process of manipulation a target cells. (b) By controlling direction of the magnetic 
field to move the micotransporter towards the dead cell. (c) Moving the microtransporter to capture the dead cell by magnetic flied. (d) 
Moving away the dead cell by microtransporter. The scale bar is 100 μm [60].
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activated cell sorter (MT-MACs) was presented by 
Adams, and the MT-MACs separation architecture 

shown in Fig. 12 [63].
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Fig. 11 (a) Schematic diagram of a two-stage enrichment chip for isolation of CTCs. (b) White blood cells are trapped by magnetic 
field. (c) Microfluidic structure for CTCs separation. (d) CTCs(EpCAM+) are trapped by the antibody [62].

Fig. 12 The MT-MACs separation architecture. (a) Step A: different target cells are labeled by different types of magnetic tag; Step B: 
sample with different tags will be separate in the magnetic field; Step C: quantification cell via a cytometry. (b) Forces act on target 
cells [63].
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Acoustic manipulation technique

In recent years, surface acoustic wave (SAW) 
techniques in microfluidic were concerned by 
researchers. Recent research demonstrates that SAW 
technique can be an effective method to manipulate 
micro-scale particles [64]. The best-known of SAW is 
composed of a longitudinal and a vertically polarized 
shear component [65]. SAWs are generally produced 
by applying an appropriate voltage on the electrodes 
of piezoelectric material. The electrodes will generate 
propagating mechanical stress. A typical SAW device 
uses at least one set of metallic interdigital transducers 
(IDTs) fabricated on the surface of a piezoelectric 
substrate. The IDT then introduces the electric field, 
generating a SAW displacement amplitude on the order 
of 1 nm [66].

In last few years, SAW technology combined 
with microfluidic technique has turned into a tool, 
which known as acoustic tweezers, to manipulate 
particles. Liquid inside of the microfluidic is pressed 
by mechanical stress. Hence, a liquid pressure gradient 
in microfluidic can be controlled by controlling the 
IDTs. Based on this principle, a continuous particle 
separation in a microfluidic channel via standing 

surface acoustic waves was introduced by Shi, shown 
in Fig. 13 [67]. The particle separation method is 
capable of separating virtually all kind of particles with 
high separation efficiency and low power consumption, 
the separation mechanism and result of separation.

After a short while, a design of on-chip manipula- 
tion of single particles, cells, and organisms using 
SAW was presented by Ding [68]. Fig. 14 shows the 
(a) schematic illustrating of a microfluidic device 
with orthogonal pairs of chirped IDTs for generating 
standing SAW. (b) shows standing SAW field generated 
by driving chirped IDTs at frequency f1 and f2. When 
particles are trapped at the nth (it is an ordinal number) 
pressure node, they can be translated a distance of 
(Δλ/2)n by switching from f1 to f2. This relationship 
indicates that the particle displacement can be tuned by 
varying the pressure node where the particle is trapped. 
(c) shows simulated pressure field between adjacent 
pressure anti-nodes. (d) shows the author used a 10-μm 
fluorescent polystyrene bead to write the word “PNAS” 
and dynamic control of a bovine red blood cell to trace 
the letters “PSU”. 

Mechanical manipulation technique
Using mechanical methods to manipulate particles 
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Fig. 13 (a)-(b) Schematic of separation mechanism, (c) Optical image of the design, (d) Image of particles separation [67].
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and bio-particles, such as capturing, sorting, and 
isolation have been emerged several decades. These 
methods use mechanical forces, such as gravity, 
hydrodynamic, and suction to manipulate particles or 
bio-particles. Different microwell dimension arrays for 
large-scale single cell trapping were designed by Rettig 
[69]. With this method, the parameters that maximize 
single-cell occupancy for two cell types, including 
microwell diameter, microwell depth, and settle time, 
were determined. The authors injected cell suspension 
into the microfluidic, which contains microwell 

array inside, and then the cells will settle into the 
microwells due to gravity. They found that microwell 
with an aspect ratio of ~1 yield optimal single-cell 
occupancy. Other structures for cell manipulation 
base on hydrodynamic also were presented. A device 
consists of physical U-shape hydrodynamic trapping 
structures array for single cell trapping and culture 
had been designed, the shape of this design is shown 
in Fig. 15(a) [70]. Researchers improved the trapping 
structure for high-efficient single cell capture. In order 
to trap particles more efficient, an geometrical V-cup 
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Fig. 14 (a)-(b) Device structure and working mechanism of the acoustic tweezers. (c) The pressure nodes of solution inside this 
device, the particles will move to and stay at the minimum pressure nodes. (d) Result of polystyrene bead and cell manipulation, top 
one using polystyrene beads to write ‘PNAS’ letters and the bottom one employing cells to write ‘PSU’ letters [68].

Fig. 15 Different shapes for cells capture. (a) Cells trapped in U-shape structures. (b) Cells trapped in V-shape. (c) Cells trapped in 
U-shape with Y-shaped fluidic guide. (d) Four types of different structure for cells trapping. [70-73].
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barriers array was presented. The capture efficiency of 
this platform is nearly 100%, and the trapping shape 
is shown in Fig. 15(b) [71]. Another structure for cells 
capture was proposed by Chen [72] . In this design, 
the first layer consists of spacers to create small gap 
between the upper layer and glass. The second layer 
is a sharp corner U-shaped compartment with sharp 
corners at the fore-end. And a Y-shaped fluidic guide 
structures are designed on the top of each U-shaped 
capture structures, shown in Fig. 15(c). A highly 
efficient single cell capture scheme using hydrodynamic 
guiding structures also was presented [73]. The authors 
designed four types of cell capture module and tested 
for optimal structure. The capturing efficient of this 
single-cell capture chip is more than 80% shown by 
the experiments. The structures for single cell trapping 
were shown in Fig. 15(d).

The structures were continually improved by 
researchers, however, those designs only suit for 
one or several kind of cells due to its manipulation 
principle depend on both geometric size of particles 
and capture structures. Thus, the method of suction for 
manipulation cell was presented. A micromanipulation 
method for single prokaryotic cells extracting was 
improved, shown in Fig. 16 [74]. Fig. 16(a) shows 

the workstation for manipulation of single cells, (1)
CellTram Oil, (2) joystick, (3) inverse scope, (4)
micromanipulator, (5) thermometer/hygrometer. (b)-
(d) shows the schematic drawing of the isolation of a 
single bacterial cell.

Another design based on the method of suction 
was presented by Anis and his colleagues [75]. They 
developed a pico-liter pump and integrated into a 
robotic manipulation system. This pico-liter pump 
can automatically select and transfer individual living 
cells of interest to analysis locations. The authors 
demonstrated that the pump aspirates and dispenses 
volumes of fluid between 500 pL and 250 nL at flow 
rates up to 250 nL/s. And then they successfully 
accomplished single cell manipulation assay by 
using Barrett’s esophagus cell. The six-axis robotic 
workstation schematic and assay image shows in Fig. 
17.

F u r t h e r m o r e ,  F l a n d e r s  t e a m  p r e s e n t e d  a 
methodology for fabrication of cellular force sensors 
composed of high aspect ratio cantilevered poly (3, 
4-ethylene dioxythiophene) (PEDOT) fibers [77]. 
These fiber sensors can be used to characterize the 
dynamics of apical pseudopod-substrate adhesive 
contacts of D. discoideum cells. They also shown that 
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Fig. 16 (a) A workstation and schematic drawing for isolation a single bacterial cell. (b)-(d) The procedure of isolation a target cell. 
[74].
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these cellular force probes that may be positioned 
independently around single cell and can interface with 
target cells without forming secondary contacts. Due 
to the characters of these probes, they may have the 
capacity of manipulation a single cell.

Conclusions and outlook

In this review, we summarized the methods 
of single cell manipulation technologies. Table 
1 shows the advantages and drawbacks of each 
cell manipulation technique. Nowadays, however, 
various cell manipulation methods often require a 
set of parameters for further standardization and 
commercialization. Hence, scientists and engineers 
design various structures based on different principle 
of cell manipulation technology to fulfill the purpose 

of high efficient, high throughput, low injury, and 
high precision of manipulation cells in single-
cell-level. Overall, cell manipulation technologies 
combine with microfluidics bring lots of benefit to 
biological research. To reach the require of exact pre-
clinical samples for current clinical trials, single cell 
manipulation technologies need to be further studied. 
And the capacity of cell manipulation device, such 
as obtaining high-purity target cell, harmless to cells, 
high manipulation efficient, high throughput, high 
automaticity, and easy to use, is mainly concerned by 
the designers and the users in the future.
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