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Abstract

Posterior instrumentation is a common fixation method used in the treatment of spinal diseases.
However, the role of different models of fixation system in improving fixation stability in these
fractures has not been established. Comparative investigation between posterior rigid fixation (pedicle
screw) and four models of posterior dynamic fixation (B Dyne, Elaspine, Bioflex, Coflex rivet) may
elucidate the efficacy of each design. The purpose of this study was to investigate the biomechanical
differences between rigid fixation and dynamic fixation implantation by using finite element analyses.
The goal of the present study was to evaluate the efficacy of five fixation systems mounted on L4-L5
motion segment. In this numerical study, finite element model of an L4-L5 segment was developed
from computed tomography image datasets. Five fixation devices were also implanted internally
to the motion segment. Another model with an intact intervertebral disc was also analysed for
comparison. Loads simulating the physiological flexion, extension and lateral bindings were applied
to the superior surface of L4. Results showed that the Elaspine, Bioflex, Coflex rivet and pedicle
screw fixation implantation could provide stability in all motions and reduce von Mises stress in the
cortical and spongy bone at the surgical segment L4-L5. Moreover, maximal von Mises stress in the
annulus disc was observed in dynamic systems but within the safe range. The greater movement of the
motion segment was also appeared in dynamic fixations. Existence of the fixation systems reduced
the stress on the intervertebral disc which might be exerted in intact cases. Use of the fixation devices
could considerably reduce the load on the discs and prepare conditions for healing of the injured
ones. Furthermore, dynamic modes of fixation conferred the possibility of movement to the motion
segments in order to facilitate the spinal activities. The numerical results showed that the posterior
fixation system (rigid and dynamic) played a very important role in the absorption and minimization
of stresses. On the other hand, the tow systems (rigid fixation and dynamic fixation) played such a
great role in reducing the stress compared to other synthetic discs. In general, the posterior fixation
system gave a lower level of stress in the cortical bones and the spongy bones of the L4-L5 lumbar
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segment compared to the intact model.

Keywords: Lumbar segment; Cortical;, Spongy; Coflex rivet; B Dyne; Bioflex; Elaspine; Pedicle
screw fixation; Annulus disc; Von Mises stress; Finite element analysis

Abbreviation: ALL = anterior longitudinal ligament; CL = capsular ligament; DF = dynamic
fixation; DIV = intervertebral disc; FE = finite element; FEA = finite element analysis; FEM =
finite element method; INT = intact; ISL = interspinous ligament; IVD = intervertebral disc; LF =
ligamentum flavum; PLL = posterior longitudinal ligament; RF = rigid fixation; SED = strain energy
density; SSL = supraspinous ligament; TL = transverse ligament

Introduction

Orthopaedic screws are primarily responsible for
retaining the stability of most fracture fixation devices,
and are commonly associated with failure due to pull-
out associated with poor screw purchase or bone loss
[1]. Screws are primarily used to supply necessary inter
fragmentary compression, as standalone fixators and in
conjunction with other orthopaedic hardware devices,
particularly plates, and so their holding power within
bone is crucial.

Bones, on the other hand, are a dynamic connective
tissue that gives form and support to the body, while
protecting vital organs and facilitating locomotion.
They also act as a reservoir for ions, especially for
calcium and phosphate, the homeostasis of which is
essential to life. These functions place serious require-
ments on the mechanical properties of bones, which
should be stiff enough to support the body’s weight
and tough enough to prevent easy fracturing. As well,
bone must be resorbed and/or formed depending on
the mechanical and biological requirements of the
body. Bones, under normal physiological conditions,
are an organ of optimal design, as they maintain
both mechanical and chemical homeostasis. Bone
remodelling activities serve to remove bone mass
where the mechanical demands of the skeleton are low,
for instance in the vicinity of orthopaedic implants, and
form bone at those sites where mechanical loads are
transmitted sufficiently [2].

After decades of research, the exact cause of cortical
porosis around implants remains a subject of debate
[3]. However, studies pertaining to bone—implant
interactions have demonstrated that stress shielding,
i.e. a reduction in normal mechanical loading of bones,
can result in bone loss in the vicinity of implants
[4, 5]. Direct observations of bone loss around
screws prior to their avulsion have been shown by
radiologic examination [6, 7]. Evidence of decreased
compression at the bone—screw interface [8] has been

hypothesized by Perren et al. [9] to be a result of
abnormal bone remodeling. These findings suggest
that normal bone remodeling will only persist if there
is a constant supply of compression or mechanical
stimuli transferred to the bone surrounding implants. In
relation to implants, stiff metallic screws, with stiffness
on the order of 100-200 GPa, carry the majority of the
shared load. This unequal load sharing causes the softer
adjacent bone, with stiffness on the order of 1-20 GPa
[10], to be atrophied. This response acts in accordance
with Wolff’s law of functional adaptation, which states
that “[e]very change in the form and function of a bone
is followed by certain definite changes in their internal
architecture and equally definite secondary alterations
in their external conformation, in accordance with
mathematical laws” [11].

The “biomechanical compatibility” of a particular
screw with bone can therefore be characterized by the
stress (or strain energy density (SED), or any other
type of mechanical stimuli) distribution that develops
in the bone around the screw. A loss of compression
between implanted screws and bone is inevitable in
vivo, particularly in the case of lag screws [8], and so
implants should be designed in a manner that limits the
stress shielding effect. Examining stress distributions
in situ may shed some light on the effects of implant
characteristics; however, which mechanical stimulus
(stress, strain, strain rate, SED, etc.) is responsible for
the initiation of the bone remodeling process is still an
open question [12, 13]. Many researchers are in favor
of SED and/or its rate as a mechanical stimulus for the
initiation of bone remodeling process [12, 14-20].

Considering that stimuli transfer from implants
is essential for bone remodeling, it is necessary to
quantify and compare how altered implant parameters
reflect upon stimuli distributions within bones. Pullout
tests performed in vivo and in synthetic samples have
shown that besides host material density [21], screw
geometry also affects pullout strength [22-25]. While
sufficient pullout strength is necessary to prevent
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screw avulsion, computational means such as finite
element analysis (FEA) are invaluable for evaluating
mechanical stimuli distributions in implant—bone
constructs [26-28]. FEA allows for simulation of a
variety of different implant parameters that have been
shown to influence stress and strain distributions in
neighboring bone [29-32]; however, most models do
not systematically relate parameters to stress shielding
effects. One example wherein stress shielding was
quantified is the work by Gefen [26]. As a means of
comparing the effect of screw parameters on stress
shielding, Gefen used a ratio of resultant stress in
bone to stress in adjacent screw threads during a
compressive load. Although this research provided a
means for quantifying potential stress shielding effects,
it only considered one type of mechanical stimuli [26].

The primary goal of this research was to examine
whether meaningful differences existed between the
distributions of stress and SED in bones resulting from
implant loading, which could ultimately determine
the rate of bone remodeling and stress shielding in
the neighboring bone. Here, FEA was employed
to simulate a tensile load applied to an orthopedic
screw inserted into bone. Considering that transfer of
mechanical stimuli to the bone is necessary to prevent
stress shielding, we systematically characterized the
transfer of two types of mechanical stimuli from the
screw to the surrounding bones, namely stress and
strain energy densities. We considered a previously
defined stress transfer parameter [26, 46], and
proposed a newly defined criterion to evaluate SED
transfer between an implanted screw and the adjacent

STANDING UPRIGHT
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—>» Movement of vertebra
—> Movement of nucleus pulposis
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bone. This new parameter allowed us to compare
stimuli (SED and stress) transfer to bones resulting
from changes in implant parameters. Comparing these
distributions sheds light on which screw configurations
may lead to greater transfer of mechanical stimuli to
the neighboring bone, and which stimuli is a better
candidate for investigating stress shielding in a bone—
screw system.

Although the efficacy of the fixation systems has
been separately studied, no comparative study exists
to shed light on the pros and cons of these systems
in a fixed model that underwent the same conditions.
Moreover, the measures of the efficiency of the
fixation systems vary between stress/strain in [IVD and
vertebrae or the displacement of the motion segment.
Therefore, the present investigation was aimed at
comparing the prevalent models of spine fixations
including rigid fixation (RF) and dynamic fixation
(DF) systems in a same model of loading conditions
using finite element method (FEM). The principal
aim of the present study was to compare the provision
of movement facility for the motion segment against
reduction in the stress of intervertebral disc (IVD).

Fig. 1 shows two vertebrae of the spinal column
with an IVD under the effect of a compound
loading (compression P+ bending moment P1). The
compressive load P created an internal pressure in the
nucleus; this pressure would thereafter generate the
disc degeneration or degenerative disc disease (Fig.
2). As regards the forward flexion P1, if the load P1
increased, automatically, the distance between the
point of load application and the axis of the spinal

BENDING SIDEWAYS TWISTING

Fig. 1 The IVD with (a) compression, (b) flexion, (c) extension, (d) lateral bending and (e) axial rotation [6].
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Normal disc Herniated disc
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Fig. 2 Load distribution at the disc D1 according to its state [7].

column increased. We saw that the posterior portion of
the annulus fibrosis was tensioned and the other front
portion was compressed; that is to say, the nucleus
pulposus bursted back (posterior compression); this
compression produced by disc protrusion came into
contact with a nerve root called the herniated disc.

Experimental
FE model of intact L4-L5 segment lumbar
spine (intact (INT) model)

Three-dimensional model of an intact human L4
vertebra was constructed from computed tomography
image datasets. The model was then adapted to
form the L4-L5 lumbar segment, with an assumed
IVD space of 11 mm. The vertebrae were treated as
cortical bones throughout, with linear elastic isotropic
material properties. The articular facets and the IVD
were modelled as linear elastic isotropic material. The

material properties of the components used in this study
are presented in Table 1. The model was then imported
to a standard finite element (FE) package and converted
to tetrahedral elements for FEA. The completed model
of the intact lumbar segment consisted of 32,7621
nodes and 199,689 elements (Fig. 3).

The commercially available FE program, Ansys
16 (ANSYS Inc., Canonsburg, PA, USA), was used
to model the spinal segments The FE model of the
osseoligamentous lumbar segment included the
vertebrae, one IVD, endplates, posterior elements and
the following ligaments: supraspinous ligament (SSL),
interspinous ligament (ISL), ligamentum flavum
(LF), transverse ligament (TL), posterior longitudinal
ligament (PLL), anterior longitudinal ligament
(ALL) and capsular ligament (CL). The material
properties of the intact L4-L5 segment were assumed
to be homogeneous, and a detailed description has
been presented in our previous studies [57, 58]. The
ligaments were simulated using ten-node link elements
with tension resistance only, and the elements were

Fig. 3 FE model of the L4-L5 Motion Segment with TVD.

Table 1 Material properties used in the FE model

Material Young modulus (E) (MPa) Poisson Coefficient References
Cortical Bone 12000 0.3 [39-45]
Cancellous Bone 100 0.2 [39, 41-42, 44-45]
Posterior Bone 3500 0.25 [39-41, 45-46]
Cartilage Endplates 12000 0.3 [40, 42, 47]
Annulus Ground Substance 4.2 0.45 [39-40, 42, 45, 49-50]
Nucleus Pulposus 1 0.499 [45, 48, 51-53]
Anterior Longitudinal Ligament 7.8 (<12%), 20.0 (>12%) 0.3 [55, 56-58]
Posterior Longitudinal Ligament 10.0 (<11%), 20.0 (>11%) 0.3 [55, 56-58]
Ligamentum Flavum 15.0 (<6.2%), 19.5 (>6.2%) 0.3 [55, 56-58]
Intertransverse Ligament 10.0 (<18%), 58.7 (>18%) 0.3 [55, 56-58]
Supra-Spinous Ligament 8.0 (<20%), 15.0 (>20%) 0.3 [55, 56-58]
Inter-Spinous Ligament 10.0 (<14%), 11.6 (>14%) 0.3 [55, 56-58]
Capsular Ligament 7.5 (<25%), 32.9 (>25%) 0.3 [55, 56-58]
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arranged in the anatomic orientation. ten-node solid
elements were used for modelling of cortical bones,
cancellous bones, endplates, posterior bony structures
and discs.

The annulus disc annulus consisted of fibres
embedded in the ground substance. Annular fibres in
6 layers were modelled using ten-node link elements
with tension resistance only and placed in an anatomic
orientation [59-61]. The facet joints were treated as
nonlinear 3D contact pairs using surface-to-surface
contact elements, and the coefficient of friction was set
to 0.1 [57, 58].

The material properties of the INT model are listed
in Table 1 and were chosen from previous studies [39-
58]. All seven ligaments were simulated by ten node
link elements with resistance tension only, and they
were arranged in the anatomical direction given by
the text book [54]; the cross-sectional area of each
ligament was obtained from previous studies [47, 52-
54]. A ten-node solid element was used for modeling
the annulus ground substance. Cortical bones and
cancellous bones were assumed to be homogeneous
and isotropic. The IVD consisted of annulus ground
substance and nucleus pulposus, which embeded
collagen fibers in the ground substance. The nucleus
pulposus was modeled as an incompressible fluid with
bulk modulus of 1 MPa by an ten-node fluid element
[45-53]. The facet joint was treated as a sliding contact
problem using surface-to-surface contact elements, and
the coefficient of friction was set at 0.1 [55, 56].

FE model of bilateral B Dyne implant fixation
implanted into the L4-L5 segment (B Dyne
implant fixation model)

The existing geometrical model of the implant

realized with CAO software (Solidworks 2016) was
imported. It consisted of an assembly of five parts:
The piston rod, the cylindrical body, the fixed rod,
the ring and the damper block. The contact surfaces
between the body and the fixed rod had a threaded
area which made it possible to assemble the implant.
In the manufacturing process, after assembly, these
two parts were welded together. The geometry of
these contact surfaces had therefore been simplified on
the geometric model (Fig. 4) in order to facilitate the
meshing and calculation steps. The metal parts (piston
rod, cylindrical body and fixed rod) were modeled in
titanium TA6V ELi with elastic properties, Young’s
modulus and Poisson’s ratio were assigned to be
112,400 MPa and 0.34, respectively. The deformable
parts (ring and damper block) are modeled with an
elastic behavior of a silicone, Young’s modulus and
Poisson’s ratio were assigned to be 600 MPa and 0.49.
The model B Dyn consisted of 228,348 elements and
378,676 nodes (Fig. 4).

FE model of bilateral Elaspine implant fixation
implanted into the L4-L5 segment (Elaspine
implant fixation model)

The Elaspine implant consisted of six parts: four
metal elements made of titanium alloy (Ti6Al4V
ISO 5832-3) and two deformable rods made of
polymer (silicone). A deformable rod was made
of polymer (silicone) with a length of 60 mm and
a diameter of 7 mm, which is mentioned in Fig.
5. The screw-bone interfaces were assigned to
be fully constrained. The material used for the
pedicle screws was Ti-6A1-4V. Young’s modulus
and Poisson’s ratio were assigned to be 113,000
MPa and 0.3, respectively. The two deformable

Piston rod

Ring
Damper block

Cylindrical body

Fig. 4 FE model of the L4-L5 motion segment with posterior DF system B Dyne.
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Fig. 5 FE model of the L4-L5 motion segment with posterior DF system Elaspine.

parts were modeled with an elastic behavior which
contained a Young’s modulus and Poisson’s ratio
that were assigned to be 600 MPa and 0.49. The
model Elaspine consisted of 223,950 elements and
373,025 nodes (Fig. 5). An assembly of two rods
and four screws (spinal assembly) was required
to stabilize a spinal segment. Each implant was
attached to the lumbar vertebrae using titanium
pedicle screws (Fig. 5).

FE model of bilateral Bioflex implant fixation
implanted into the L4-L5 segment (Bioflex
implant fixation model)

The Bioflex implant was a helical spring
manufactured by the company BioSpine, The total
length of the rod was 70 mm and the spring height was
15.7 mm, The spring diameter was 5 mm and the pitch
equalled 5.5 mm. The material used for the Bioflex
model was Ti-6Al-4V. Young’s modulus and Poisson’s
ratio were assigned to be 113,000 MPa and 0.3,
respectively. The Bioflex model consisted of 228,101
elements and 399,240 nodes (Fig. 6).

FE model of Coflex rivet implanted into the L4-
L5 segment (Coflex rivet model)

The Coflex rivet model was implanted at the L4-L5
segment; this model was used to simulate instability
by cutting the LF, the facet capsules and 50% of the
inferior bony facet bilaterally at the L4-L5 segment
(Tsai et al. 2006; Kettler et al. 2008). In addition, the
SSLs and ISLs had to be resected before insertion.

The Coflex rivet differed from the original Coflex
implant by adding two rivets joining the wings and
spinous processes (Fig. 7). The coefficient of friction
for the rest of the contact regions was set to 0.1 (Fig. 6).

The rivets were simplified as cylinders and were
constrained to both the holes on the wings of the
Coflex and the spinous processes in all degrees of
freedom. (The degrees of freedom of screw nodes
were interpolated with the corresponding degrees
of freedom of the nodes on the Coflex and spinous
processes during the execution of ANSYS program.)
The material used for the Coflex rivet was a Ti-6A1-4V
alloy. The Young’s modulus and Poisson’s ratio were

Fig. 7 FE model of the L4-L5 motion segment with posterior DF system Coflex rivet.
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assigned to be 113,000 MPa and 0.3, respectively. The
model Coflex rivet consisted of 202,615 elements and
332,396 nodes (Fig. 7).

FE model of bilateral pedicle screw fixation
implanted into the L4-L5 segment (pedicle
screw fixation model)

The pedicle screw fixation model was implanted
at the L4-L5 segment. The difference between the
pedicle screw fixation model and the abovementioned
implantation models was that the pedicle screw fixation
model preserved the SSLs and ISLs (Fig. 8). The
pedicle screw fixation consisted of two rods (diameter,
5 mm) and four pedicle screws (diameter, 5 mm). The
pedicle screws were inserted through the pedicles of
the L4 and L5 vertebrae bilaterally. The pedicle screws
were simplified as cylinders. The screw-bone interfaces
were assigned to be fully constrained. The material
used for the pedicle screws was Ti-6Al-4V. Young’s
modulus and Poisson’s ratio were assigned to be
113,000 MPa and 0.3, respectively. The model pedicle
screw consisted of 225,769 eclements and 394,288
nodes (Fig. 8).

Therefore, the purpose of this work was to study
the effect of rigid and dynamic posterior attachment

(b)

systems on stress reduction in cortical and spongy
bones of the lumbar segment L4-L5 between the RF
and DF systems of the spinal column by using FEA on
a two-segment spinal model. In addition, comparative
investigation between the RF and the four DF systems
may elucidate the efficacy of each design. The goal of
the present study was to evaluate the efficacy of four
fixation systems mounted on L4-L5 motion segment.
FEM was used to evaluate stress distribution in the disc
and determine the overall displacement of the segment
as a measure of movement possibility, the maximal
von Mises stress at the annulus disc and the von Mises
stress distribution at the surgical annulus disc.

Boundary and loading conditions

The loading condition was similar to the in-vitro
study of Yamamoto et al., in which the intact L4-
L5 segment was subjected to the maximum possible
load without causing spinal injury [33]. Therefore, all
four physiological motions were imposed, each with
a moment P1 equal to 10.6 Nm and a compression P
equal to 400 N on the superior surface of the L4 level.
These models constrained all degrees of freedom at the

inferior surfaces of the vertebra LS. Fig. 9 shows the
location of the applied loads.

Wi,
- _',/il i 'l{l

(1]

© )

Fig. 9 Biomechanical models of the intact L4-L5 segment: (a) Anterior load (flexion); (b) Posterior load (extension); (c) Lateral load

(flexion lateral); and (d) Axial load (torsion).
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Results and Discussion
Maximal von Mises stress of the cortical
bones of the spinal segment L4-L5

Fig. 10 shows the maximal von Mises stress of
the cortical bones of the spinal segment L4-L5 in
flexion, extension, lateral bending and axial rotation
for different devices of posterior RF and DF fixation
systems. The B Dyne, Bioflex, Coflex rivet, pedicle
screw fixation models increased von Mises stress at the
surgical segment L4-L5 in flexion, lateral bending and
axial rotation. However, the Elaspine model decreased
von Mises stress at the surgical segment in flexion,
lateral bending and axial rotation.

On the other hand, Fig. 11 shows that the maximum
of von Mises stress in the cortical bones L5 and L4
equalled to 19.295, 10.996, 19.925, 11.645 MPa and
10.88, 10.996, 14.921, 21.024 MPa, respectively to the
other components of the spinal segment system. Fig. 12
shows that the implantation of the lumbar segment L4-
L5 with the dynamic posterior fixation system B Dyne
inserted between the vertebra L4 and L5 and simulated
by the FEM confirmed an increase of the equivalent
stress in the cortical bones L5 and L4. In flexion, we
noted in Fig. 11 and 12 that the von Mises stress in the
cortical bones L5 and L4 increased to 19.295, 31.176
MPa and 10.88, 13.249 MPa.

Flexion

[ mCortical bone L5
I = Cortical bone L4

Coflex  Pedicle
rivet screw

Intact

B Dyne Elaspine Bioflex

Lateral bending

o]
o

[ mCortical bone L5
70 =Cortical bone L4

o

[0 )]
o O O
T T T

= N W b
o O
T

o

Maximal von Mises stress (MPa)

o

Coflex  Pedicle
rivet screw

Intact

B Dyne Elaspine Bioflex

Fig. 12 shows that for the extension load, the two
FE models, INT model and B Dyne supported maximal
von Mises stress equal to 10.996, 10.701 MPa and
10.996, 23.559 MPa in the cortical bones L4 and L5
with respect to the other components of the spinal
segment system in lateral bending and axial rotation,
The B Dyne increased von Mises stress at the cortical
bones L4 and L5 of the surgical segment L4-L5, which
justified that the dynamic posterior fixation system B
Dyne did not play a very important role in stabilizing
the movement of the spine.

Maximal von Mises stress at the cortical
bones of L4-L5 to Elaspine model

Fig. 13 shows that the mixed loading, compression
P plus bending moment P1, presented a contour of the
maximal stress (red part) in the cortical bone of L4-L5.
We saw in this figure the stress was concentrated at the
anterior and posterior pedicle regions of the cortical
bone of the lumbar segment L4-L5, which were close
to the superior and inferior sides of the endplate in
flexion and extension.

A loading applied to the upper surface of the lumbar
vertebra L4 of the spine caused a high concentration
of the maximal von Mises stress at the anterior and
posterior parts of the cortical bones of LS and L4 (red
part) which equalled to 25.677 and 17,31 MPa (Fig. 13).

Extension

30r  wcCortical bone L5
| =Cortical bone L4

N
o
T

[N
o
T

Maximal von Mises stress (MPa)
=
Ul

o o

Coflex  Pedicle
rivet screw

Intact B Dyne Elaspine Bioflex

Axial rotation
GRE
1607

m Cortical bone L5
= Cortical bone L4

= e
0o O N D
o O O O

— T

N B
o O o
T T

Maximal von Mises stress
[*2]
o

Intact Pedicle

B Dyne Elaspine Bioflex Coflex
rivet screw

Fig. 10 Maximal von Mises stress of the cortical bones of the spinal segment L4-L5 in flexion, extension, lateral bending and axial

rotation for different devices of posterior RF and DF systems.
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Fig. 11 Von Mises stress distribution of the cortical bones L4 and L5 to the INT model in flexion, extension, lateral bending and
axial rotation. The stress was concentrated at the anterior and posterior regions of the cortical bones L4 and L5 of the lumbar segment
L4-L5, which were close to the superior and inferior sides of the endplate in flexion and extension. For lateral bending load, the
stress was concentrated at the right regions of the cortical bones of the lumbar segment L4-L5. For axial rotation load, the stress was
concentrated at the anterior and posterior regions of the cortical bones of the lumbar segment L4-L5 (outline in red). For the two
loads of lateral bending and axial rotation, lumbar segment L4-L5 had the most even cortical bones stress distribution.
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Fig. 12 Von Mises stress distribution of the cortical bones L4 and L5 to the B Dyne model in flexion, extension, lateral bending and
axial rotation. The stress was concentrated at the anterior and posterior pedicle regions of the cortical bones L4 and L5 of the lumbar
segment L4-L5, which were close to the superior and inferior sides of the endplate in flexion and extension. For lateral bending load,
the stress was concentrated at the anterior and right pedicle regions of the cortical bones of the lumbar segment L4-L5. For axial
rotation load, the stress was concentrated at the anterior and posterior pedicle regions of the cortical bones of the lumbar segment L4-
L5 (contour in red). For the two loads of flexion and lateral bending, lumbar segment L4-L5 had the most even cortical bone stress
distribution.

For extension, lateral bending and axial rotation  flexion, we noted in Fig. 11 and 13 that the von Mises
load, the implantation of the lumbar segment L4-L5  stress at the cortical bone of LS and L4 increased to
with the dynamic posterior fixation system Elaspine  19.295, 31.176 MPa and 10.88, 13.249 MPa, which
inserted between the vertebrae L4-L5 and simulated by  justified that the dynamic posterior fixation system
the FEM confirmed a decrease of the equivalent stress  Elaspine played a very important role in stabilizing the
in the cortical bone of L4-L5 which equaled to 6.1576,  movement of the spine in extension, lateral bending
17.145, 15.737, 19.503, 16,449 and 11,034 MPa. In  and axial rotation.
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Fig. 13 Von Mises stress distribution of the cortical bone of L4-L5 to Elaspine model in flexion, extension, lateral bending and axial
rotation. The stress was concentrated at the anterior and posterior pedicle regions of the cortical bone of the lumbar segment L4-L5,
which were close to the superior and inferior sides of the endplate in flexion and extension. For lateral bending load, the stress was
concentrated at the anterior and right pedicle regions of the cortical bone of the lumbar segment L4-L5, For axial rotation load, the
stress was concentrated at the anterior surface of the cortical bone L5 and superior surface of the cartilage endplates of the cortical
bone of L4 (contour in red). For the flexion and lateral bending loads applied to lumbar segment L4-L5, there existed the most even

cortical bone stress distribution.
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Fig. 14 Maximal von Mises stress at the cortical bones of L4-L5 to Bioflex model.

Maximal von Mises stress at the cortical
bones of L4-L5 to Bioflex model

Fig. 14 shows von Mises stress distribution of the
cortical bone of L4-L5 to Bioflex model in flexion,
extension, lateral bending and axial rotation. The
stress was concentrated at the anterior and posterior
regions of the cortical bone of the lumbar segment
L4-L5, which were close to the superior and inferior
sides of the endplate in flexion and extension. For
lateral bending load, the stress was concentrated at the
posterior and right regions of the cortical bone of L4

and the anterior and superior surface of the cortical
bone of L5. For axial rotation load, the stress was
concentrated at the posterior surface of the cortical
bone of L4 and the superior surface of the cartilage
endplates of the cortical bone of L5 (red part). For
the lateral bending and axial rotation loads applied to
lumbar segment L4-L5, there existed the most even
cortical bone stress distribution.

On the other hand, Fig. 14 shows that the dynamic
posterior fixation system Bioflex inserted between
the two segments of L4-L5 absorbed maximal von
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Mises stress which equalled to 45.445, 27,551, 70,852
and 177,5 MPa in the cortical bone of L4, and which
equalled to 45.445, 15.306, 64.753 and 103.95 MPa
in the cortical bone of L5, with respect to the other
compounds of the spinal segment L4-L5 (contour in
red). Hence, the replacement of the dynamic posterior
fixation system Bioflex did not play a very important
role in reducing stress (Fig. 14).

Maximal von Mises stress at the cortical
bones of L4-L5 to Coflex rivet model

Fig. 15 shows the dynamic posterior fixation
system Coflex rivet inserted in the two segments of
L4-L5, The instrumented model was subjected to a
compression load P with the bending moment P1, on
the four physiological planes (flexion, extension, lateral
bending and axial rotation). The results showed that the
maximal von Mises stress in the cortical bones of L4
and L5 equalled to 11.303, 17.962, 17.435 and12.226
MPa, and 29.368, 14.846, 27.173 and 23.727 MPa
(contour in red). We concluded that the implantation
of the Coflex rivet decreased von Mises stress at the
cortical bone of L4-L5 in flexion and axial rotation
and increased in extension and lateral bending; that
is to say, the Coflex rivet could ensure the stability of
the movements in flexion and axial rotation, and could
reconstruct the posterior vertebral structure for the
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sharing of loads in order to reduce the annular stress at
the surgical segment.

Maximal von Mises stress at the cortical bone
of L4-L5 to the pedicle screw fixation model

Fig. 16 shows the posterior RF system (pedicle
screw fixation) inserted between the lumbar segment
L4-L5. The model was fixed at the bottom of L5 and
loaded at the top of L4 to simulate flexion, extension
and lateral bending. The results showed that pedicle
screw fixation decreased von Mises stress in the
cortical bones of L4 and L5, which equalled to 11.009
and 27.186 MPa in flexion (contour in red). On the
other hand, for extension, lateral bending and axial
rotation, the posterior RF system increased von
Mises at the cortical bone of L4-L5; that is to say,
pedicle screw fixation could ensure the stability of
the movements in flexion and could reconstruct the
posterior vertebral structure for the sharing of the loads
in order to reduce the annular stress at the surgical
segment.

Maximal von Mises stress at the cancellous
bone of the spinal segment L4-L5

Fig. 17 shows the maximal von Mises stress at
the cancellous bone of the spinal segment L4-L5 in
flexion, extension, lateral bending and axial rotation

Von Mises stress (cortical bone L4)  Von Mises stress (cortical bone 1.4)
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Fig. 15 Von Mises stress distribution of the cortical bone of L4-L5 to the Coflex rivet model in flexion, extension, lateral bending and
axial rotation. The stress was concentrated at the superior surface endplate of the cortical bone of L4 and posterior pedicle regions
of the cortical bone of L4, and at the anterior and posterior surface of the cortical bone of L5 which were close to the superior and
inferior sides of the endplate in flexion and extension. For lateral bending load, the stress was concentrated at the superior and right
regions of the cortical bone of L4, and the anterior and posterior pedicle surface of the cortical bone of L5. For axial rotation load,
the stress was concentrated at the posterior and superior surface of the cortical bone of L4, and the anterior and posterior pedicle
surface of the cartilage endplates of the cortical bone of L5 (red part). For the flexion and lateral bending loads applied to lumbar
segment L4-L5, there existed the most even cortical bone stress distribution.
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Fig. 16 Von Mises stress distribution of the cortical bone of L4-L5 to pedicle screw fixation model in flexion, extension, lateral
bending and axial rotation. The stress was concentrated at the superior surface endplate of the cortical bone of L4-L5, and anterior
regions of the cortical bone of the lumbar segment L4-L5, which were close to the superior and inferior sides of the endplate in
flexion and extension. For lateral bending load, the stress was concentrated at the superior and right regions of the cortical bone of
L4, and the superior and inferior surface endplate of the cortical bone of LS. For axial rotation load, the stress was concentrated at
the posterior pedicle and superior surface of the cortical bone of L4, and the anterior and posterior pedicle surface of the cartilage
endplates of the cortical bone of L5 (red part). For the flexion and extension loads applied to the lumbar segment L4-L5, there existed
the most even cortical bone stress distribution.
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Fig. 17 Maximal von Mises stress at the cancellous bone of the spinal segment L4-L5.

for different devices of posterior RF and DF systems.
The B Dyne, Elaspine, Bioflex, Coflex rivet and

Dyne, Elaspine, Bioflex, Coflex rivet decreased the
von Mises stress at the cancellous bone of L5. The

pedicle screw fixation models decreased von Mises
stress at the cancellous bone of L4. But the two models
of dynamic posterior fixation systems, B Dyne and
Elaspine, increased von Mises stress at the cancellous
bone of L5 in flexion. For the load extension, the B

posterior RF system, pedicle screw fixation, increased
the von Mises stress at the cancellous bone of LS. The
Elaspine, Bioflex, Coflex rivet, pedicle screw fixation
decreased von Mises stress at the spongy bone of L4,
and von Mises stress increased at the dynamic posterior
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fixation system B Dyne. However, Elaspine, Bioflex,
Coflex rivet and pedicle screw fixation decreased von
Mises stress at the spongy bone of L4-L5. The B Dyne
increased von Mises stress at the surgical segment L4-
L5 in lateral bending and axial rotation.

Fig. 18 shows the stress distribution of the
cancellous bone of L4-L5 under four different loading
conditions: extension, flexion, lateral bending and
axial rotation. In all cases, the INT model showed the
maximal von Mises stress at the cancellous bone of L4
equalled to 1.0172, 0.7565, 0.5676 and 0.3910 MPa,
and at L5 equalled to 0.5476, 0.2063, 0.4294 and 0.3020
MPa, respectively to the other components of the spinal
segment system. Concerning the flexion load, Fig. 19
shows the implantation of the lumbar segment L4-L5
with the dynamic posterior fixation system B Dyne
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inserted between the lumbar segment L4-L5, and the
FEM confirmed a decrease of von Mises stress at the
cancellous bone of L4-L5. With B Dyne model under
tow loading physiology (lateral bending and axial
rotation), von Mises stress at the cancellous bones of
L5 and L4 increased to 0.9164, 0.6331 MPa and 0.6180,
0.7691 MPa, respectively to the other components of
the spinal segment system.

Maximal von Mises stress at the cancellous
bones of L4 and L5 to the INT model

Fig. 18 shows von Mises stress distribution at the
cancellous bones of L4-L5 to the INT model in flexion,
extension, lateral bending and axial rotation. The stress
was concentrated at the anterior and posterior regions
of the spongy bones of the lumbar segment L4-L5,
which were close to the superior and inferior sides of
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Fig. 18 Maximal von Mises stress at the cancellous bones of L4-L5 to the INT model.
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Fig. 19 Maximal von Mises stress at the cancellous bones of L4-L5 to B Dyne model.
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the endplate in flexion and extension. For the lateral
bending load, the stress was concentrated at the right
regions of the spongy bone of the lumbar segment [.4-
L5. For axial rotation load, the stress was concentrated
at the left regions of the spongy bone of the lumbar
segment L4-L5 (contour in red). For the flexion and
extension loads applied to the lumbar segment L4-
L5, there existed the most even cancellous bone stress
distribution.

Maximal von Mises stress at the cancellous
bones of L4-L5 to the B Dyne model

Fig. 19 shows the von Mises stress distribution
at the cancellous bones of L4-L5 to the B Dyne
model in flexion, extension, lateral bending and
axial rotation. Von Mises stress was concentrated at
the anterior surface of the spongy bone of L4, and
located at the upper and lower surface of the endplate
of the cancellous bones of L4-L5 in flexion and
extension. For the lateral bending load, the stress was
concentrated at the right regions of the spongy bone of
L4, the anterior surface of the spongy bone of L5, and
was located at the superior surface of the endplate of
the cancellous bone of L5. For axial rotation loads, the
stress was concentrated in the posterior regions of the
spongy bones of L4 and L5, and located at the superior
surface of the spongy bones of L4 and L5 (contour in
red). For the flexion and lateral bending loads applied
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to the lumbar segment L4-L5, there existed the most
even cancellous bone stress distribution.

Maximal von Mises stress at the cancellous
bones of L4 and L5 to Elaspine model

Fig. 20 shows that von Mises stress was
concentrated at the anterior surface of the spongy bone
of L4, and located at the superior and inferior surface
of the endplate of the cancellous bones of L4 and LS5 in
flexion and extension. On the other hand, the dynamic
posterior fixation system, Elaspine model, decreased
von Mises stress at the spongy bones of L4 and L5
which equalled to 0.4948, 0.7530, 0.3698 MPa, and
0.6758, 0.1048, 0.4060 MPa, respectively to the other
components of the spinal segment system. In lateral
bending, Elaspine model increased von Mises stress at
the spongy bones of L4 and L5, which justified that the
dynamic posterior fixation system Elaspine played a
very important role in stabilizing the movement of the
spine.

Maximal von Mises stress at the cancellous
bone of L4-L5 to Bioflex model

Fig. 21 shows the von Mises stress distribution
of the cancellous bones of L4 and L5 to Bioflex
model in flexion, extension, lateral bending and
axial rotation. Von Mises stress was concentrated at
the anterior surface of the spongy bone of L4, and
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Fig. 20 Von Mises stress distribution of the cancellous bones of L4 and L5 to Elaspine model in flexion, extension, lateral bending
and axial rotation. Von Mises stress was concentrated at the anterior surface of the spongy bone of L4, and located at the superior
and inferior surface of the endplate of the cancellous bones of L4 and L5 in flexion and extension. For the lateral bending load, the
stress was concentrated at the right regions of the spongy bone of L4, the anterior surface of the spongy bone of L5, and located at
the superior surface of the endplate of the cancellous bone of LS. For axial rotation loads, the stress was concentrated in the superior
regions of the spongy bones of L4 and L5, and located at the anterior surface of the spongy bone of L5 (contour in red). For the
flexion, extension and lateral bending loads applied to the lumbar segment L4-L5, there existed the most even cancellous bone stress

distribution.
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Fig. 21 Maximal von Mises stress at the cancellous bones of L4-L5 to Bioflex model.

located at the upper and lower regions of the endplate
of the cancellous bones of L4 and L5 in flexion and
extension (contour in red). For the lateral bending
load, the stress was concentrated in the right regions
of the spongy bone of L4 and the anterior surface of
the spongy bone of L5, and located at the superior
surface of the endplate of the cancellous bone of L5.
For axial rotation loads, the stress was concentrated in
the superior regions of the spongy bones of L4 and LS,
and located at the anterior surface of the spongy bone
of L5 (red part). For the flexion and axial rotation loads
applied to the lumbar segment L4-L5, there existed the
most even cancellous bone stress distribution.

For the dynamic posterior fixation system, Bioflex
model, the maximal von Mises stress at the segments
surgical level L4-L5 decreased remarkably at the
spongy bones of L4 and L5, and were equal to 0.4084,
0.3284, 0.3484, 0.3787 MPa, and 0.4250, 0.0830,
0.2673, 0.2991 MPa in flexion, extension, torsion, and
lateral bending, respectively, compared to INT model
(Fig. 21).

Maximal von Mises stress at the cancellous
bones of L4 and L5 to Coflex rivet model

Moreover, the stress concentration and distribution
pattern changed more obviously at the segments
lumbar L4-L5 in Coflex rivet model: Von Mises stress
was concentrated at the anterior surface of the spongy
bone of L4, and located at the upper and lower regions
of the endplate of the cancellous bones of L4 and L5 in
flexion and extension (contour in red). For the lateral
bending load, the stress was concentrated in the right
regions of the spongy bones of L4 and L5, and located

at the superior surface of the endplate of the cancellous
bones of L4 and L5. For axial rotation loads, the stress
was concentrated in the superior regions of the spongy
bones of L4 and L5, and located at the anterior surface
of the spongy bone L5 (red part). For theflexion and
lateral bending applied to the lumbar segment L4-
L5, there existed the most even cancellous bone
stress distribution. For the dynamic posterior fixation
system (Coflex rivet model), the maximal von Mises
stress at the segments surgical level L4-L5 decreased
remarkably at the spongy bones of L4 and L5 which
equalled to 0.3366, 0.3382, 0.3483, 0.2079 MPa,
and 0.3393, 0.0782, 0.2242, 0.2027 MPa in flexion,
extension, torsion and lateral bending, respectively,
compared to INT model (Fig. 22).

Maximal von Mises stress at the cancellous
bones of L4 and L5 to pedicle screw fixation
model

For the posterior RF system (pedicle screw fixation)
inserted between the lumbar segment L4-L5, the model
was fixed at the bottom of L5 and loaded at the top of
L4 to simulate flexion, extension and lateral bending.
The results showed that pedicle screw fixation reduced
von Mises stress in the cortical bones of L4 and LS5,
and equalled to 0.4503, 0.4503, 0.6551, 0.3986 MPa,
and 0.33.2, 0.3302, 0.1816, 0.2652 MPa in flexion,
extension, lateral bending and axial rotation (contour
in red) (Fig. 23).

Maximal von Mises stress at the annulus disc
of L4-L5

Fig. 24 shows the maximal von Mises stress at the
annulus disc to the INT model in flexion, extension,

http://www.nanobe.org



264

Nano Biomed. Eng.,2017,Vol. 9, Iss. 3

Von Mises stress (cancellous bone 1.4) Von Mises stress (cancellous bone 1L4)

033669 Max | 0,33824 Max

030072 = 03002

02647 02636

022876 022658

019278 Anterior — 0186 Anterior
01568 1 015214

012083 — 0114

0,084848 0077698

0048871 004478

0,012893 Min | 0,0032576 Min

Posterior Posterior

Von Mises stress (cancellous bone L5) Von Mises stress (cancellous bone L3)

0,33938 Max 0,0782 Max
030315 0,070037

] 026601 - oogiam

| 023068 0053712
015445 Anterior 0043549 Anterior
015822 0037366

! 01219 d 0009223

! 0085756 002106
0,049524 0,01289%
0,013293 Min . 0,0047348 Min

Posterior

Posterior

Von Mises stress (cancellous bone L4)

0311

0,27363
0,23626
0,19882
016151
012414
0,026763
0,04839
0,012016 Min

0,34838 Max

Von Mises stress (cancellous bone L5)

0,22429 Max
020039
01765
015261
012871
010482
0,080924
0,05703
0,033136

0,0092421 Min

Anterior

Posterior

Anterior

Posterior

Von Mises stress (cancellous bone 1.4)

0,2079 Max
B 0 10654

{ 016518
014382

= 012246
! 01011
| 0,070743

{ 0058383
0,037022
0,015662 Min

Anterior

Posterior

Von Mises stress (cancellous bone L5)

0,20271 Max
018053

015635

013617

011390
0,091205
0069624
0,047442
0,025261
0,0030796 Min

Posterior

Fig. 22 Von Mises stress distribution of the cancellous bones of L4 and L5 to Coflex rivet model in flexion, extension, lateral
bending and axial rotation. Von Mises stress was concentrated at the anterior surface of the spongy bone of L4, and located at the
upper and lower regions of the endplate of the cancellous bones of L4 and L5 in flexion and extension (contour in red). For the lateral
bending load, the stress was concentrated in the right regions of the spongy bones of L4 and L5 and located at the superior surface of
the endplate of the cancellous bones of L4 and LS. For axial rotation loads, the stress was concentrated in the superior regions of the
spongy bones of L4 and L5 and located at the anterior surface of the spongy bone of LS (red part). For the flexion and lateral bending
applied to the lumbar segment L4-L5, there existed the most even cancellous bone stress distribution.
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Fig. 23 Von Mises stress distribution of the cancellous bones of L4 and L5 to pedicle screw fixation model in flexion, extension,
lateral bending and axial rotation. Von Mises stress was concentrated at the superior surface of the spongy bones of L4 and L5, and
located at the upper regions of the endplate of the cancellous bones of L4 and L5 in flexion and extension (contour in red). For the
lateral bending load, the stress was concentrated in the right regions of the spongy bones of L4 and L5, and located at the superior
surface of the endplate of the cancellous bones of L4 and LS. For axial rotation loads, the stress was concentrated in the superior
regions of the spongy bones of L4 and L5, and located at the anterior surface of the spongy bones of the lumbar segment L4-L5
(red part). For the flexion, extension and lateral bending loads applied to the lumbar segment L4-L5, there existed the most even

cancellous bone stress distribution.

lateral bending and axial rotation. The B Dyne,
Elaspine, Bioflex, pedicle screw fixation models
reduced annulus stress at the surgical segment L4-L5
in flexion, extension, lateral bending and axial rotation.
However, the Coflex rivet reduced annulus stress at the
surgical segment in flexion, extension, lateral bending

and axial rotation.

The two principal functions of the fixation systems
were to balance the stabilization and dynamization of
the motion segment, and to reduce the over-pressure
on vulnerable tissues like muscles or IVDs. Therefore,
overall displacement of the motion segment and
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Fig. 25 Maximal von Mises stress at the INT disc model and total displacement of the L4-L5 spinal segment in flexion, extension,
lateral bending and axial rotation for different devices of posterior RF and DF systems.

stress at the IVD could be considered as measures for
efficacy of the fixation systems.

Maximal von Mises stress at the disc INT
model and total displacement of the spinal
segment L4-L5

Fig. 25 presents the contours for five models of
fixation. Maximal displacement was revealed in Coflex
rivet model, as of 2.1477 mm in flexion, 0.58024 mm
in extension, 2.6188 mm in lateral bending and 1.8423
mm in axial rotation for the top anterior edge of the
vertebral body due to the loading.

The highest maximal von Mises stress value for
the IVD also appeared in Coflex rivet model, as of
1.0842 MPa in flexion, 0.47009 MPa in extension,
1.1316 MPa in lateral bending and 0.8263 MPa in axial
rotation (Fig. 24).

In flexion, the total displacement of the spinal
segment L4-L5 decreased by 36.81% in Coflex rivet
model, 29.64% in Bioflex model, 22.29% in Elaspine
model, 21.18% in B Dyne model and 2.47% in pedicle
screw fixation (Fig. 25).

On the other hand, the maximal von Mises stress
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at the spinal segment L4-L5 decreased by 58.80% in
Coflex rivet model, 41.48% in Elaspine model, 39.22%
in B Dyne model, 16.58% in Bioflex model and 3.70%
in pedicle screw fixation.

However, the total displacement of the spinal
segment L4-L5 and the maximal von Mises stress at
the intact disc increased by 36.81%, 58.80% in Coflex
rivet model, and 2.47%, 3.70% in pedicle screw
fixation model at both L4 and L5 segments.

In extension, the total displacement of the spinal
segment L4-L5 decreased by 20.15% in Coflex rivet
model, 12.80% in Elaspine model, 8.11% in B Dyne
model, 5% in pedicle screw and 2.72% in Bioflex
model at the surgical segment (Fig. 25).

After implantation, von Mises stress effectively
decreased by 40% in Coflex rivet mode, 20.61% in
Elaspine model, 20.60% in B Dyne model, 5.91% in
pedicle screw fixation model and 1.54% in Bioflex
model when compared with the INT model. In
addition, the von Mises stress was equal in the two
dynamic models of B Dyne and Elaspine, but the total
displacement of the spinal segment L4-L5 increased by
12.80% in Elaspine model and decreased by 8.11% in
B dyne model at both L4 and L5 segments (Fig. 25).

In lateral bending, the total displacement of the
spinal segment decreased by 45.89% in Coflex rivet
model, 17.88% in Bioflex model, 15.02% in Elaspine
model, 13.18% in B Dyne model and 1.97% in pedicle
screw fixation model at the surgical segment, when
compared with that of the INT model (Fig. 25).

However, von Mises stress in the intact disc
decreased by 66.67% in Coflex rivet, 29.71% in
Elaspine model, 29.20% in Bioflex model, 27.86%
in the B dyne model, 2.99% in pedicle screw fixation
model at both the L4-L5 segment (Fig. 25).

In axial rotation, the anterior displacement of the
spinal segment (L5/L4) decreased by 21.53% in Coflex
rivet model, 18.24% in Bioflex model, 15.31% in
Elaspine model, 10.57% in B Dyne model and 2.83%
in pedicle screw fixation model at the surgical segment,
when compared with that of the INT model.

However, in pedicle screw fixation model, von
Mises stress decreased by 4.35% at the L4-L5 segment
and increased by 30.12% in B Dyne model, 32.49% in
Bioflex model, 36.05% in Elaspine model and 47.15%
in Coflex rivet at the adjacent L4-L5 segment (Fig. 25).

For B Dyne model, maximal annulus stress at the

surgical level L4-L5 decreased remarkably by 39.22%,
20.60%, 27.86% and 30.12% in flexion, extension,
torsion and lateral bending respectively, compared to
the INT model (Fig. 25).

For Elaspine model, the maximal annulus stress at
the surgical level decreased remarkably by 41.48%,
20.61%, 29.71% and 36.05% in flexion, extension,
torsion and lateral bending respectively, compared to
the INT model.

In Bioflex model, the annulus stress decreased at
the surgical level L4-L5 by 16.58%, 1.54%, 29.20%
and 32.49% in flexion, extension, torsion and lateral
bending, respectively (Fig. 25).

On the other hand, Fig. 25 clearly shows that for
Coflex rivet model, the maximal annulus stress at
the surgical level decreased remarkably by 58.80%,
40.76%, 66.67% and 47.15% in flexion, extension,
torsion and lateral bending respectively, compared to
the INT model.

Fig. 25 shows that with the mixed loading of
compression P plus bending moment P1 applied to
the upper surface of the lumbar vertebra L4 in Pedicle
screw fixation, the maximal annulus stress at the
surgical level decreased remarkably by 3.70%, 5.91%,
2.99% and 4.35% in flexion, extension, torsion and
lateral bending respectively, compared to the INT
model.

Stress concentration and distribution pattern of the
annulus disc at the surgical segment changed obviously
in these models. In extension, the stress contour of the
five models was concentrated at the posterior—superior
regions of the annulus disc (Fig. 26). However, after
implantation, the stress concentration of the annulus
disc at the posterior disc diminished obviously.
Furthermore, in flexion, von Mises stress was
concentrated at the anterior regions of the annulus disc,
close to the superior and inferior sides of the endplate
(Fig. 26).

Coflex rivet was found to present the most even
annulus disc stress distribution in flexion, extension,
lateral bending and axial rotation even when compared
with the four posterior fixation systems B Dyne,
Elaspine, Bioflex and pedicle screw fixation. In
lateral bending and axial rotation, equivalent stress
was concentrated at the right part of the annulus disc
regions, close to the superior and inferior sides of the
endplate in the five models when compared with that
of the INT model (Fig. 26). After implantation, the
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Fig. 26 Von Mises stress distribution at the annulus disc of the surgical segment L4-L5 in flexion, extension, lateral bending
and axial rotation. The stress at the INT model and four models of B Dyne, Elaspine, Coflex rivet and pedicle screw fixation was
concentrated at the posterior-superior regions of the annulus. For Bioflex model, the stress was concentrated in the left and right
regions of the annulus, which were close to the superior and inferior sides of the endplate in the INT model. After implantation, the
stress concentration of stress at the annulus disc diminished obviously.

stress concentration of the annulus disc at the posterior
disc was also diminished.

Fig. 25 presents these contours for five models of
fixation. In flexion and extension, the maximal total
displacement was revealed in Coflex rivet model as of

36.81 mm and 20.15 mm for the top anterior edge of
the vertebral body due to the loading. In lateral bending
and axial rotation, the contour of total displacement
was concentrated at Coflex rivet model as of 45.89 mm
and 21.53 mm for the top anterior edge of the vertebral
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body due to the loading when compared with that of
the INT model (Fig. 29 & 30).

Fig. 27 shows the total displacement at the
motion segment and von Mises stress distribution
at the annulus disc of the surgical segment L4-L5
in extension for various surgical models. The stress
at the INT model and the four models of B Dyne,
Elaspine, Coflex rivet and pedicle screw fixation was
concentrated in the posterior-superior regions of the
annulus. For Bioflex model, the stress was concentrated
at the left and right regions of the annulus, which
were close to the superior and inferior sides of the
endplate in the INT model. After implantation, the
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stress concentration of the annulus disc diminished
obviously.

Fig. 28 shows the stress distribution of the annulus
disc in the surgical segment L4-L5 in flexion for
various surgical models. The stress was concentrated at
the superior and inferior regions of the annulus, which
were close to the superior and inferior sides of the
endplate in B Dyne and Bioflex models. For Elaspine,
Coflex rivet and pedicle screw fixation models, the
stress was concentrated at the posterior and anterior
regions of the annulus. Coflex rivet and Bioflex
models presented the most even annulus disc stress
distribution.
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Fig. 27 Total displacement at the motion segment and von Mises stress distribution at the annulus disc of the surgical segment L4-L5

in extension for various surgical models.
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Fig. 28 Stress distribution of the annulus disc of surgical segment L4-L5 in flexion for various surgical models.
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Fig. 29 Stress distribution of the annulus disc of the surgical segment L4-L5 in right lateral bending for various surgical models. The
stress was concentrated at the right regions of the annulus, which were close to the superior and inferior sides of the endplate in the
INT and defect models. Coflex rivet model have the most even annulus disc stress distribution. After pedicle screw fixation, the stress
concentration of the annulus disc diminished obviously.
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Fig. 30 Stress distribution of the annulus disc of surgical segment L4-L5 in right axial rotation for various surgical models.
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Fig. 31 Maximal von Mises stress at the posterior fixation system to the spinal segment L4-L5 in flexion, extension, lateral bending
and axial rotation.
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Fig. 32 Von Mises stress distribution of the posterior fixation system (PFS) to the spinal segment L4-L5 in flexion, extension, lateral

bending and axial rotation for various surgical models.

Maximal von Mises stress at the posterior
fixation system to the spinal segment L4-L5

Fig. 31 shows the maximal von Mises stress at the
posterior fixation system to the spinal segment L4-L5
in flexion, extension, lateral bending and axial rotation.
Bioflex, Coflex rivet and pedicle screw fixation models
decreased von Mises stress at the posterior fixation
system of the surgical segment L4-L5 in flexion,
extension, lateral bending and axial rotation. However,
B Dyne and Elaspine models increased von Mises
stress at the posterior fixation system of the surgical
segment L4-L5 in flexion, extension, lateral bending
and axial rotation.

Fig. 32 presents the contours for five models of
fixation. Maximal von Mises stress revealed in the
dynamic posterior fixation system of Elaspine model

was 1365.2 MPa in flexion, 438.64 MPa in extension,
897.49 MPa in lateral bending and 1842.3 MPa in axial
rotation.

The highest maximal von Mises stress value for
the posterior fixation system of Elaspine model also
appeared in B Dyne model which was 1164.6 MPa in
flexion, 418.1 MPa in extension, 887.76 MPa in lateral
bending, and 787.64 MPa in axial rotation (Fig. 32).

Fig. 32 shows the two EF models Bioflex and
Coflex rivet with pedicle screws inserted in the two
lumbar segments of L4-L5, The two instrumented
models were subjected to a compression load P with
bending moment P1 on a four physiological plane.
The results showed that the maximal von Mises stress
in the posterior fixation system equalled to 18.192,
0.4320, 10.164 and 11.471 MPa for Bioflex system
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and 142.24, 123.18, 207.32 and 134.72 MPa for Coflex
rivet system (contour in red). On the other hand, Fig.
32 shows that the posterior RF system, pedicle screw
fixation, absorbed von Mises stress which equalled to
18.192, 0.432, 10.164 and 11.471 MPa (contour in red)
in flexion, extension, lateral bending and axial rotation.
We concluded that the implantation of the pedicular
screws could ensure the stability of all the movements
and could reconstruct the posterior vertebral structure
for the sharing of the loads in order to reduce the
annular stress at the surgical segment.

Fig. 32 shows the stress distribution of the posterior
fixation system to the spinal segment L4-L5 in flexion,
extension, lateral bending and axial rotation for various
surgical models. The stress was concentrated at the
right regions of the annulus, which were close to the
superior and inferior sides of the endplate in the defect
model. After implantation, the stress concentration of
the annulus disc diminished obviously.

The FEA on five models of fixation in order to
stabilize L4-L5 motion segment was performed. RF
and DF system models were evaluated. Maximal
displacement for the motion segment was observed
in Coflex rivet model. In flexion, Bioflex model
between the two vertebrae permitted the complex to
deflect up to 29.64 mm for the top anterior edge of
the L4 vertebra. In flexion, pedicle screw fixation
model revealed relatively less displacement for the
motion segment by 2.47% reduction against Coflex
rivet model. Noticeably higher fixation degree of the
RF system was due to the straight rigid connector rod
between pedicle screws. In such a firm structure, a
considerable share of the loading energy was consumed
to bend the rigid rod. In the RF of pedicle screw
fixation model, the overall displacement of the motion
segment was associated with the bending deflection of
the straight rod.

B Dyne, Elaspine and Bioflex models on the other
hand experienced higher displacement in comparison
with pedicle screw fixation model. It may be confusing
how the two models, B Dyne and Elaspine,with an
extra component of polymer-spacer i.e. silicone,
received higher movement of displacement; however,
it was noted that stainless steel rigid connector rod in
pedicle screw fixation model was replaced by a silicone
rod which possessed Young’s modulus approximately
half of the RF rod. Thus, the overall resistance of
the fixation system against the external loading of
flexion was remarkably diminished, and the maximal
displacement in Coflex rivet became 36.81% greater

than in pedicle screw fixation model.

Fundamental diversities in these five models led to
different behavior mechanics of the posterior fixation
systems. In pedicle screw fixation model, the rigid rod
resisted against the loading and the exerted energy was
devoted to bending the rod. In flexion, the two rods of
Elaspine model were strained, but the anterior half of
the rod of silicone was compressed and constrained
the rising of the movement of the motion segment.
In Bioflex model, loading energy was consumed to
compress or strain the spring ring, but the compression
of the spring directly resulted in shortening of the ring’s
ends. in flexion, the overall displacement of the motion
segment increased up to the maximal value of 1.59 mm.
It should also be considered that characteristics of the
spring provided in the connecting rod in Bioflex model
was of crucial importance in the results. Diameter of
the rod, diameter of the ring, number of the rings and
density of the rings per length could influence the
stiffness of such a design.

After implantation, maximal stress at the IVD
also occurred in Coflex rivet model. Provision of the
extreme movement for the motion segment resulted
in an increase of stress at the anterior regions of the
L4-L5 IVD. The maximal stress with these fixation
systems was 1.13 MPa, less than those reported in other
numerical works. For instance, in flexion the maximal
stress reported for Bioflex model by Zhang et al was
roughly 0.96 MPa. It was then concluded that the
loading was in medium range of load exertion of the
human back based on an in-vivo experiment reporting
that healthy human in relax standing sustained 0.5 MPa
in the IVD.

In the present study, we also showed that the rivet
connecting the metal wings and bony spinous process
provided more security than the conventional device.
Therefore, the rivet could improve load transmission
on the posterior spinal structure to decrease the stress
concentration on the annulus disc at the surgical
segment in all motions.

However, Coflex rivet constrained the surgical
segment in all motions and increased displacement at
the segment L4-L5, especially in flexion. Therefore,
Coflex rivet increased annulus stress at both the
segments of L4-L5 in flexion and extension.

The numerical results showed that the tow posterior
fixation system, both RF and DF, played a very
important role in the absorption and minimization of
stress in the lumbar segment L4-L5. On the other hand,
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the three fixation systems, Elaspine, Bioflex, Coflex
rivet and pedicle screw fixation also played a great
role in reducing the stress compared to INT model. In
general, the posterior fixation system, both RF and DF,
as well as those reinforced by the pedicle screw gave
a lower level of stress at the cortical and spongy bones
of the lumbar segment L4-L5, as compared to the INT
model.

Several assumptions were considered in the present
numerical analysis. The most important one was to
ignore the existence and the roles of the muscles acting
on vertebral bodies which could also resist against
the loading; however, since the goal was to compare
the fixation systems, the analysis neglected them.
Moreover, it should be taken into account that the
loading of analysis was adopted from the experimental
testing. Similar numerical simulations could elucidate
the efficacy of such fixation systems in other cases as
well.

Conclusions

FEM is a very precise technique used to analyze
structural stresses. With its application in engineering,
the method can solve many equations to calculate
the stresses based on the mechanical properties
of the structures being analyzed. FEM has many
advantages highlighted by the possibility of including
the heterogeneity and irregularity of the contour
of the spine in the design of the model and the
relative ease with which the loads can be applied
to different directions and sizes for more complete
analysis. Elaspine, Bioflex, Coflex rivet and pedicle
screw fixation implantation can provide stability in
all motions and can reconstruct the posterior spinal
structure for load sharing to reduce annulus disc stress
at the surgical segment L4-L5. However, Coflex rivet
caused a higher displacement and stress at the disc.
As a general conclusion, the application of fixation
systems can considerably reduce the load on the IVD
and prepare conditions for healing of the injured IVD.
Moreover, the four fixation systems, Elaspine, Bioflex,
Coflex rivet and pedicle screw fixation play too great
a role in reducing the stress compared to INT model.
In general, the posterior fixation systems, RF, DF or
reinforced by pedicle screw give a lower level of stress
at the cortical and spongy bone of the lumbar segment
L4-L5, as compared to the INT model. Furthermore,
dynamic modes of fixation, i.e. B Dyne, Elaspine,
Bioflex and Coflex rivet, confer the possibility of

movement to the motion segments in order to facilitate
the spinal activities.
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