Molecular Communication in Nanonetworks

Hao Yan, Ge Chang, Tianhao Sun, Yingzhan Xu, Zhongke Ma, Tao Zhou, Lin Lin

Abstract

With the development of nanotechnology, bioengineering and biology, it is envisioned that biological nanomachines may flourish in assorted valuable applications considering their unique characteristics including energy efficiency, bio-compatibility and extremely small scale. However, current biological nanomachines are only able to perform simple tasks at nano-level. Therefore, nanonetworks which interconnect bio-nanomachines into a network have been proposed to overcome the limitations of individual biological nanomachine. Among the possible communication schemes for nanonetworks, modern electromagnetic communication techniques are not good solutions due to the limitation of antenna size. Inspired by nature, one promising candidate is molecular communication proposed from the perspective of communication and computer engineering. Integrated with the knowledge from communication and computer engineering, molecular communication enables biological nanomachines to interface with other biological nanomachines and existing biological systems. Their interconnections form a bio-nanonetwork which is capable to provide functions that individual nanomachines cannot accomplish. In this paper, we introduce the state-of-the-art progress in the emerging field of molecular communication. The framework, design and engineering of components and theoretical modeling of molecular communication are discussed. The research challenges and opportunities are also talked about to inspire future researches of more feasible molecular communication systems. 

PDF
Full Text

Nano Biomedicine and Engineering.

Copyright © 2009-2016 OAHOST, Publication and Conference Management by Scientists and for Scientists.