Evaluation of Anti-diabetic Potential of Anti-microbial Carbon Quantum Dots from Vitis vinifera Seeds 

C. R. Parvathy, P. K. Praseetha

Views:1156

Abstract

Carbon quantum dots (CQDs) have a size of 10 nm (or less), with lots of biomedical advantages, creating huge excitement in different research fields. The aim of this study includes an eco-friendly synthesis of biogenic CQDs from grape (Vitis vinifera) seeds, identifying the characteristics and assessing its anti-diabetic as well as anti-microbial activity. CQDs are prepared by the pyrolysis method. Synthesized CQDs were confirmed by ultraviolet (UV)–visible (Vis) spectrophotometer, and the characterization study was done by X-ray diffractometer, photoluminescence spectroscopy, Fourier transform infra-red spectroscopy, and transmission electron microscopy with selected area electron diffraction (SAED). Anti-diabetic activity of CQDs was analyzed by in vitro α-glycosidase, α-amylase inhibition assays, and glucose uptake studies. The anti-bacterial activity of CQDs was analyzed by anti-microbial assay technique against Escherichia coli, Pseudomonas aeruginosaStaphylococcus aureus, and Streptococcus mutans. The results showed that the CQDs synthesized from a natural source like grape seeds, were amorphous in nature, the average particle size was 4 nm, and they contain functional groups like carboxyl and hydroxyl. Subsequently, it showed that the sp2 domains also produce green fluorescence. The anti-diabetic experimental method revealed that the CQDs enhance glucose uptake and inhibit carbohydrate hydrolyzing enzymes. CQDs also exhibit anti-bacterial properties against both Gram-positive and Gram-negative bacteria, according to their antimicrobial impact. Due to their small size and higher activity, CQDs will become strong anti-diabetic agents as well as anti-bacterial ones.

PDF
Full Text

Nano Biomedicine and Engineering.

Copyright © Shanghai Jiao Tong University Press